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Abstract

Numerical simulation of problems defined on unbounded domains are challenging
due to physical constraints on computational resources. When approaching this
type of problem, one is forced to somehow truncate the simulation domain. In order
to ensure consistency between the equation to solve and the computational model
on a truncated domain, some form of absorbing boundary or boundary layer is often
required.

In this work we study stability and optimization of an absorbing layer for the
Boltzmann equation. More precisely, we look at the BGK approximation to the
Boltzmann equation and study an absorbing layer developed following the perfectly
matched layer (PML) technique.

First, a review of the theory behind the PML technique is presented along with
a PML for the BGK model. The review is followed by an analysis on the stability
of the model. We find that in order to ensure stability, some of the parameters in
the model must be discarded. By employing the ANOVA expansion of multivariate
functions we calculate the Total Sensitivity Indices of the remaining parameters of
the model. Finally, a small set of important parameters is found and minimization
techniques are used to choose the optimal parameter values in this set.

Keywords BGK model, perfectly matched layer, modal analysis, differential op-
erators, stability analysis, ANOVA expansion, total sensitivity index
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Introduction

Due to physical constraints on computational resources, numerical simulations of
unbounded physical problems are virtually impossible to carry out without the trun-
cation of the simulation domain. When not dealing with periodic solutions, one is
usually forced to truncate the domain by introducing a boundary layer or absorbing
layer.

In this work we study and enhance an effective absorbing layer for the Boltzmann
equation. In particular, we will look at the BGK approximation to the Boltzmann
equation and we will make use of the perfectly matched layers technique.

The concept of perfectly matched layer has been introduced by Bérenger [3]
starting from physical considerations on electromagnetic waves. Bérenger changed
Maxwell equations in the absorbing layer so that waves entering into the layer are
damped out and no reflections arise at the interface, as Figure 1 illustrates. This is
the reason why the layer is referred to as being perfectly matched.

x

y

PML

}}
Physical domain

Figure 1: Qualitative illustration of a wave problem with an absorbing PML.

However, the original approach of Bérenger was based on a splitting technique
that could break the hyperbolicity of the system. Then, if the problem is no more
hyperbolic, but only weakly hyperbolic, the lower order terms must be treated care-
fully, because some disturbances may arise at later stages of the simulation.
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A new construction of PMLs for hyperbolic systems was brought forth by Hagstrom
[17]. He proposed a procedure based on the modal analysis of the governing equa-
tions in Laplace-Fourier space in order to derive the layer model, which yet is feasible
only for linear low-order terms. According to this approach, the modal solution in-
side the layer is constructed so that the eigenfunctions of the problem remain the
same regardless whether we are looking at the problem outside the layer or inside
the layer. This guarantees that no reflection will arise at the interface and the layer
is perfectly matched. Appelö et al. [2] later deepened the analysis of this technique
and established a solid theory behind it. By using such approach, Gao et al. [11]
constructed a PML for the BGK equations, and this is the model that we are going
to use in the present work.

The purpose of this work is to carry out an analysis of the PML for the BGK
equations proposed by Gao et al. [11] to investigate the role and importance of the
parameters appearing in the model. To this aim we will use both analytical and
numerical tools. The ultimate goal would be to be able to use the absorbing layer
so developed together with the Navier-Stokes equations (NSE). There are actually
some formulas that allow to relate the variables evolved by the BGK equations to
the physical variables described by the NSE. However, the key point here is that
although the NSE have a nonlinear nature, the BGK equations are linear. Since
there is nowadays a well established theory for the development and the analysis of
perfectly matched layers for linear problems [2, 17], it should now be apparent why
we resort to the study of the BGK model. The coupling of the NSE and the BGK
equations is left for future work.

Outline
The rest of this work is organized as follows. Chapter 1 presents the Bhatnagar-
Gross-Krook (BGK) model of the Boltzmann equation, and details the implemen-
tation aspects and the tests performed to validate the code. Chapter 2 introduces
a PML for the BGK model along the lines of [11]. Chapters 3 and 4 represent the
heart of this work. In Chapter 3 we establish appropriate stability conditions for the
BGK model with the PML. This is done via the symbol of the differential system
and continued fraction expansions of the characteristic polynomial. In Chapter 4
we present a machinery based on the ANOVA expansion to systematically explore
the parameter space. Finally, some relevant articles and side aspects, not discussed
in the main text, are left to the appendices.
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1

The BGK model

1.1 Arising from physics
The Bhatnagar-Gross-Krook model (hereafter BGK model) is an approximation to
the Boltzmann equation defined as:

∂f

∂t
+ ζ ·∇xf = −1

γ
(f − fB(ρ,u)) , (1.1)

where f ≡ f(t, ζ,x) represents the particle distribution function, ζ = [ζ1, ζ2, ζ3]
is the microscopic velocity, and γ is a relaxation time. Moreover, fB denotes the
Maxwell-Boltzmann equilibrium distribution function:

fB(ρ,u) =
ρ

(2πRT)d/2
exp

(
−|ζ − u|

2

2RT

)
,

where ρ and u are the macroscopic density and velocity, R is the gas constant, T is
the thermodynamic temperature and d is the number of space dimensions. The two
terms on the left-hand side of (1.1) represent mixing and transport of the particles,
respectively, while the right-hand side takes into account the collisions between the
particles.

The relationships between f(t, ζ,x) and the macroscopic quantities, i.e. density
ρ, momentum ρu and pressure tensor Pij, are given as [15]

ρ =

∫ +∞

−∞
f dζ, ρui =

∫ +∞

−∞
ζif dζ, Pij =

∫ +∞

−∞
(ζi − ui) (ζj − uj) f dζ. (1.2)

The stress tensor σij is defined by

σij = p I − Pij, (1.3)

where p = 1
3

tr{Pij} = RT ρ is the scalar pressure.

1.2 The approximation of the BGK model
Directly solving the BGK approximation to the Boltzmann equation being too de-
manding, we approximate it with an expansion in Hermite polynomials1.

1Hermite polynomials are a type of classical orthogonal polynomial sequence. They show up in
many applications, ranging from finite element methods (as shape functions of beams) to quantum

3



1. THE BGK MODEL

We expand the particle distribution function in a basis ξk(ζ) made up of Hermite
polynomials:

f(t, ζ,x) =
ρ

(2πRT)d/2
exp

(
−ζ · ζ

2RT

) ∞∑
k=0

ak(x, t) ξk(ζ).

After some manipulations, we find the approximate form of the BGK model :

∂a

∂t
+ A1

∂a

∂x1

+ A2
∂a

∂x2

= S(a), (1.4)

where a = (a0, a1, a2, a3, a4, a5)T is the vector collecting the expansion coefficients
and

A1 =
√
RT



0 1 0 0 0 0

1 0 0 0
√

2 0

0 0 0 1 0 0

0 0 1 0 0 0

0
√

2 0 0 0 0

0 0 0 0 0 0


, A2 =

√
RT



0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0
√

2

0 1 0 0 0 0

0 0 0 0 0 0

0 0
√

2 0 0 0


.

Here S(a) is a nonlinear source vector:

S(a) = −1

γ

(
0, 0, 0, a3 −

a1a2

a0

, a4 −
a2

1√
2a0

, a5 −
a2

2√
2a0

)T
.

Note that S(a) collects nonlinear terms, but also some linear, low-order terms. This
means that it can be split as:

S(a) = SL(a) + SNL(a)

where
SL(a) = −1

γ
(0, 0, 0, 1, 1, 1)a,

SNL(a) = −1

γ

(
0, 0, 0,−a1a2

a0

,− a2
1√

2a0

,− a2
2√

2a0

)T
,

so we can rewrite (1.4) highlighting the nonlinear terms

∂a

∂t
+ A1

∂a

∂x1

+ A2
∂a

∂x2

− SL(a) = SNL(a). (1.5)

physics (as eigenstates of the quantum harmonic oscillator). They also appear in the Hermite
functions, which form a complete orthogonal system for the Fourier transform.

4



1. THE BGK MODEL

1.3 Hyperbolicity

In this section we look at system (1.4) and investigate its hyperbolic properties
following previous work [7, 18]. Let P be the differential operator of the system
(1.4), defined as

P (∂/∂x) := −
[
A1

∂

∂x1

+ A2
∂

∂x2

]
. (1.6)

In the most general case, P is also a function of x ≡ (x1, x2) and t, but here, since
we are dealing with a system of PDEs with constant coefficients, it is only a function
of ∂/∂x ≡ (∂/∂x1, ∂/∂x2). We define the principal part P1 of the differential system
by replacing the partial derivatives ∂/∂x in P with n ≡ (n1, n2) ∈ R2:

P1(n) := −
√
RT



0 n1 n2 0 0 0

n1 0 0 n2

√
2n1 0

n2 0 0 n1 0
√
2n2

0 n2 n1 0 0 0

0
√
2n1 0 0 0 0

0 0
√
2n2 0 0 0


. (1.7)

Again, in the most general case, P1 would also be a function of x and t. In
the following we show some properties of system (1.4), starting from the following
definition.

Definition 1.1. The system (1.4) is called hyperbolic if the m×m matrix P1(x, t,n)
is diagonalizable for each x,n ∈ Rd, t ≥ 0.

Here m denotes the number of conserved variables, which in the BGK model is
equal to 6, while d is the number of space dimensions, which in our case is equal to
2. One could also say that the system (1.4) is hyperbolic if all the m eigenvalues of
P1(x, t,n) are real. In our case, the eigenvalues of P1(n) are

0, 0, −
√
n2

1 + n2
2,

√
n2

1 + n2
2, −

√
3
√
n2

1 + n2
2,
√

3
√
n2

1 + n2
2, (1.8)

and, since they are all real, then (1.4) is indeed hyperbolic.

Definition 1.2. The system of PDEs (1.4) is symmetric hyperbolic if each Ai is a
symmetric matrix for each x ∈ Rd, t ≥ 0. Moreover, (1.4) is strictly hyperbolic if
for each x,n ∈ Rd, n 6= 0 and each t ≥ 0 the matrix P1(x, t,n) has m distinct real
eigenvalues.

We note that in our case the two matrices A1 and A2, which contain constant
coefficients, are both symmetric and hence it is clear that (1.4) is a symmetric hy-
perbolic system. However, (1.4) is not strictly hyperbolic, since zero is appearing
twice as eigenvalue of P (n). We refer the reader to Appendix A for a proof of the
well-posedness of the BGK model.

5



1. THE BGK MODEL

The hyperbolicity condition is important because it is equivalent to requiring
that there are m distinct plane wave solutions of (1.4) for each direction n [7].

In general, hyperbolic systems may have eigenvalues that are zero and pairs of
eigenvalues that have the same magnitude, but opposite signs. If we have, say, p
pairs of eigenvalues that differ in their sign only, this implies that at each boundary
we can impose at most p boundary conditions. In our case the eigenvalues in (1.8)
are telling us that there are six characteristics, among which two are positive, two
are negative and two are zero. According to our previous observation, this means
that at any boundary we do not have to impose more than two boundary conditions,
but we may impose an additional two corresponding to the non-propagating modes.

1.4 Relationship with the Navier-Stokes equations
Using the relationships in (1.2) and (1.3) and the properties of Hermite polynomials,
one can find the following connections between the expansion coefficients a and the
macroscopic quantities:

ρ =

∫ +∞

−∞
fB dζ = a0, u =

∫ +∞

−∞
ζ1fB dζ =

a1

√
RT
a0

, v =

∫ +∞

−∞
ζ2fB dζ =

a2

√
RT
a0

,

σ11 = −
∫ +∞

−∞
(ζ1 − u)2 fB dζ + RT ρ = −RT

(√
2a4 −

a2
1

a0

)
,

σ22 = −
∫ +∞

−∞
(ζ2 − v)2 fB dζ + RT ρ = −RT

(√
2a5 −

a2
2

a0

)
,

σ12 = −
∫ +∞

−∞
(ζ1 − u) (ζ2 − v) fB dζ + RT ρ = −RT

(
a3 −

a1a2

a0

)
,

and the reverse:
a0 = ρ, a1 =

uρ√
RT

, a2 =
vρ√
RT

, (1.9)

a3 =
uvρ− σ12√

RT
, a4 =

√
2

2

u2ρ− σ11√
RT

, a5 =

√
2

2

v2ρ− σ22√
RT

.

It is possible to show that from (1.4) one can recover the Navier-Stokes equations,
under the assumptions that the relaxation time and the Mach number go to zero,
namely in the case of weakly compressible flows only [15]. Let us consider three
time scales γ, Γ0, Γ1 with the relation γ � Γ0 � Γ1. Here γ is of the order of
magnitude of the collision time, Γ0 represents an intermediate time scale, small
enough to allow to consider the macroscopic quantities constant in time, and Γ1 is
the macroscopic time scale on which variations in density and momentum appear.
On the scale Γ0 under the condition that γ is very small, the coefficients (a0, a1, a2)
can be considered constant in time. Moreover, one can get a relation between the
stresses and the flow field via a kinematic viscosity ν = RT γ and the ideal gas law
p = RT ρ. The coefficients (a3, a4, a5) are related to the macroscopic variables as

a3 = −γ
(
∂ρv

∂x1

+
∂ρu

∂x2

)
+
uvρ

RT
,

6



1. THE BGK MODEL

a4 = −γ
√

2
∂ρu

∂x1

+
u2ρ√
2RT

, (1.10)

a5 = −γ
√

2
∂ρv

∂x2

+
v2ρ√
2RT

,

Substituting (1.9) and (1.10) into the first three equations of the BGK model (1.4),
one can find

∂ρ

∂t
+
∂ρu

∂x1

+
∂ρv

∂x2

= 0,

∂ρu

∂t
+
∂ρu2

∂x1

+
∂ρuv

∂x2

=
∂σ11

∂x1

+
∂σ12

∂x2

− ∂p

∂x1

,

∂ρv

∂t
+
∂ρuv

∂x1

+
∂ρv2

∂x2

=
∂σ21

∂x1

+
∂σ22

∂x2

− ∂p

∂x2

,

with the stress tensor being

σij = RT γ
(
∂ρui
∂xj

+
∂ρuj
∂xi

)
.

We recognize the above equations as the two-dimensional isentropic Navier-Stokes
equations for a weakly compressible flow.

1.5 Implementation aspects

Hereafter we will describe some aspects of the implementation and testing of the
BGK model. To check whether this model is actually capable of reproducing the
behaviour of some simple flows, we consider the Couette-Poiseuille flow. This prob-
lem is nice because we have an analytic solution to it. In fact, it is an exact solution
in closed-form to the Navier-Stokes equations.

1.5.1 Spatial discretization

We decided to adopt a fourth order finite difference method for the spatial discretiza-
tion, so as to have a completely regular grid. A scheme making use of more general,
unstructured grids will be a bit more cumbersome to handle with, for instance when
we would like to compare two solutions, since they would be living on two different
grids and we would have to introduce some sort of mapping to allow the comparison
to be performed. Moreover, if we have an unstructured grid, also periodic boundary
conditions are more complicated to handle. However, in this project our main goal
is not the spatial discretization but to understand the PML method. Therefore we
regard a finite difference scheme suitable for this purpose, at least at this early stage.

Given a univariate function f(x), the fourth order accurate finite difference es-
timate of the first derivative of f at xi is

f ′(xi) =
f(xi−2)− 8f(xi−1) + 8f(xi+1)− f(xi+2)

12∆x
+O(∆x4).

7



1. THE BGK MODEL

To see how this applies to our case, let us consider for instance the first equation in
the BGK model (1.5):

∂a0

∂t
= −
√
RT
(
∂a1

∂x
+
∂a2

∂y

)
,

which becomes, after spatial discretization:

∂a0

∂t
= −
√
RT
(
a1(xi−2, yj)− 8a1(xi−1, yj) + 8a1(xi+1, yj)− a1(xi+2, yj)

12∆x

+
a2(xi, yj−2)− 8a2(xi, yj−1) + 8a2(xi, yj+1)− a2(xi, yj+2)

12∆y

)
.

Note that the a are functions of two spatial variables, so it should be evident that
when we take the derivative of a with respect to x we fix our attention on the same
yj and, conversely, when we take the derivative of a with respect to y we fix our
attention on the same xi. Moreover, note that here we have not done the time
discretization yet. This makes the last equation an instance of the so-called scheme
in semi-discrete form.

Figure 1.1 shows the spatial discretization stencil of the fourth order finite dif-
ference scheme adopted in this work. The bold a denotes the variables that are
evolved according to the BGK model (1.5). If we repeat this spatial discretization

x

y

yj−2

yj−1

yj

yj+1

yj+1

xi+2xi+1xixi−1xi−2

ani,j−2

ani,j−1

ani,jani,j

ani,j+1

ani,j+2

ani−1,j

ani−2,j
ani+1,j

ani+2,j

Figure 1.1: Stencil at time tn.

for all the equations of the BGK model, then we get the semi-discrete form of all
the model, and we can synthetically write

∂a

∂t
= f (t, a) .

8



1. THE BGK MODEL

where f denotes the right-hand side of the BGK equations after spatial discretiza-
tion.

1.5.2 Time discretization

For the time discretization, we employ a fourth order Runge-Kutta method :

κ1 = f (tn, an) ,

κ2 = f

(
tn +

∆t

2
, an +

∆t

2
κ1

)
,

κ3 = f

(
tn +

∆t

2
, an +

∆t

2
κ2

)
,

κ4 = f (tn + ∆t, an + ∆tκ3) ,

an+1 = an +
∆t

6
(κ1 + 2κ2 + 2κ3 + κ4) ,

where f denotes the right-hand side of the BGK equations after spatial discretiza-
tion, ∆t is the time-step and an are the BGK variables computed at time tn. The
Runge-Kutta method is a multi-stage method in which each intermediate stage is
in some sense equivalent to a forward Euler method [14].

1.5.3 The CFL condition

In general, for a d-dimensional space, the stability condition for a hyperbolic system
is expressed as [23]

∆t ≤ C min

(
∆xi√
d|v|

)
,

where C is a constant that depends on the method, i = 1, 2, . . . , d and |v| =
(
∑d

i=1 v
2
i )

1/2. In our case, the stable time-step becomes:

∆t ≤ ∆x√
3
√

2
√

2RT
=

∆x

2
√

3RT
,

where
√

3 is the largest eigenvalue,
√

2 is the square root of the number of space
dimensions and

√
2RT is the largest entry of A1 and A2.

The stability condition in two space dimensions can be viewed as an extension
of the well known result in 1D: the numerical domain of dependence of a time-
dependent PDE has to contain the physical domain of dependence [21]. Courant,
Friedrichs and Lewy wrote a fundamental paper in 1928 that was the first paper
on the stability and convergence of finite difference methods for PDEs. Figure 1.2
provides a sketch of this concept for a problem in two space dimensions.

1.6 Imposing boundary conditions
In hyperbolic problems, the treatment of boundary conditions is closely related to the
theory of characteristics. The characteristics are lines along which the information

9



1. THE BGK MODEL

Δ t }
t n

t n + 1

numerical domain of dependence

physical domain of dependence

Figure 1.2: Graphical representation of the CFL condition in two space dimensions.

coming from the boundaries of the domain or from the initial condition travels. We
point out that boundary conditions must be imposed on those boundaries from where
the wave originates, but not on boundaries towards which the wave is propagating.
This means that one has to have at least a minimal knowledge about the physics of
the problem.

In one space dimension, the original system of hyperbolic equations can be recast
in terms of the characteristic variables. In 1D this is relatively straightforward to
achieve because a wave can only propagate along two directions: the left or the
right. So if the wave moves to the right, we must specify a boundary condition at
the left-end of the domain, whereas if the wave moves to the left, we must specify a
boundary condition at the right-end of the domain.

When we go to more than one space dimension, things can get quickly out of
hand, because a wave now has infinitely-many directions of propagation. Rigorously,
one should impose the boundary conditions on the characteristic variables. However,
when dealing with systems that depend on more than one spatial variable, as in
our case (1.5), we have to resort to symmetrization techniques. Nonetheless the
reconstruction on the characteristic variables is beyond the scope of this project, so
we give just a short presentation of symmetrization techniques in Appendix A.

1.6.1 The mirroring technique

We detail the technique used in our code to enforce the boundary conditions. We
resort to a technique that we may call the mirroring principle, which makes use of
ghost points. Without loss of generality, we illustrate this for a 1D setting.

To explain how Dirichlet boundary conditions are imposed, let us consider Figure
1.3, which sketches a solution profile close to a left boundary of a 1D domain.

10
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a i

i - 2 i - 1 i i + 1 i + 2 

- a i + 1

a i + 1

- a i + 2

a i + 2

Figure 1.3: Mirroring technique for Dirichlet boundary conditions.

We look at the point i, located on the left boundary of the domain. Since,
according to our fourth order finite difference scheme, we need four neighbouring
points to compute the derivative at a point, we also look at the two inner grid-points
i+ 1, i+ 2 closest to i, and create two ghost points at the left of i by using the same
grid-size as in the inner grid. At these two ghost points i−1 and i−2 we assign the
values of −ai+1 and −ai+2, respectively. One can view this as a central symmetry of
the two points (i+1, ai+1) and (i+2, ai+2) with respect to the boundary point i. We
do this to force the solution to pass through the boundary point i, thus satisfying the
Dirichlet boundary condition. This technique, that we have illustrated in the case
of homogeneous boundary conditions, extends also to the non-homogeneous case.

Now to see how this mirroring principle can be applied to the Neumann boundary
conditions let us consider Figure 1.4.

a i

i - 2 i - 1 i i + 1 i + 2 

a i + 1 a i + 1

a i + 2 a i + 2

Figure 1.4: Mirroring technique for Neumann boundary conditions.

This time at the two ghost points i − 1 and i − 2 we assign the values of ai+1

and ai+2, respectively. One can view this as an axial symmetry of the two points
(i + 1, ai+1) and (i + 2, ai+2) with respect to a vertical axis passing through the
boundary point i. This strategy forces the derivative of the solution at the boundary
point i to be zero, thus satisfying a homogeneous Neumann boundary condition.
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1.7 Flowchart of the BGK code

The flowcharts in this report are not intended to be exhaustive, since all the docu-
mentation is available within the code. At any rate, we hope that they can improve
the understanding of the algorithm.

Figure 1.5 shows a flowchart of the code for the BGK model. The function
StartUpBGK defines the computational domain, computes a stable time-step accord-
ing to the CFL condition and sets the initial conditions for the BGK variables. Inside
the loop the integration of the 2D BGK equations is performed until FinalTime is
reached. The function BGK_RHS2D imposes the boundary conditions and evaluates
the right-hand side of the BGK equations using the 4th order accurate centered
finite difference scheme. The function PlotBGK2D is optional and allows us to visu-
alize the time evolution of either the BGK variables or the physical variables.

Driver_BGK

StartUpBGK

while t<FinalTime

BGK_RHS2D

PlotBGK2D

End

Figure 1.5: Flowchart of the code for the BGK model.

1.8 Accuracy test

To check that the numerical scheme is actually fourth order accurate we are going
to test it for a simple Couette-Poiseuille flow. We exploit the fact that for the
Couette-Poiseuille flow we have an exact solution to the Navier-Stokes equations.

12



1. THE BGK MODEL

Of course here we are not solving the Navier-Stokes equations, but this remains a
good test for the code because, as we have seen above, there is a connection between
the Navier-Stokes equations and the BGK model. Hence we use the exact solution
for the Couette-Poiseuille flow into the BGK and we expect that the code should be
able to maintain that solution. This can also be verified qualitatively.

We consider a square domain Lx = Ly = 1.00 with 20 grid-points in each direc-
tion. The values of the BGK parameters are

RT = 1, ν = 0.01, γ = ν/RT.

The initial conditions are set to

a0 = ρ =
pin − x (pin − pout)

RT
, u = 4umax y (1− y) , a1 =

uρ√
RT

,

a2 = 0, a3 = γ 4umax 2yρ, a4 =
u2ρ√
2RT

+ γu
√

2
pout − pin

RT
, a5 = 0.

Figure 1.6 shows the initial conditions for the BGK variables a. Again we note that
the initial conditions should be maintained throughout the simulation.
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Figure 1.6: Initial conditions for the Couette-Poiseuille flow of the test.

Figure 1.7 shows the BGK variables a at the end of the simulation. We can
observe that some minor oscillations arise, in particular for the coefficient a2, but
their magnitude is very small, of the order of 10−5. On the one hand, from a
qualitative point of view, we can conclude that the code is working properly for this
benchmark case.
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Figure 1.7: Solution of the BGK model at the end of the simulation, for the Couette-
Poiseuille flow of the test.

On the other hand, in a more quantitative perspective, in order to know the
actual order of convergence of the numerical scheme so implemented we can calculate
the error between the exact solution and the numerical solution, at the final time
FinalTime, according to different mesh-sizes ∆x = ∆y. We measure the error in
the discrete L2-norm since we are dealing with a smooth problem. The continuous
L2-norm of the error is

‖ε‖L2=

∫∫
Ω

(
u(x,y) − uex

(x,y)

)2
dx dy

1/2

,

which in discrete form turns into

‖ε‖L2=

(
∆x∆y

∑
i

∑
j

(
uij − uex

ij

)2

)1/2

.

with uij and uex
ij being the numerical solution and the exact solution, respectively,

computed at the discrete grid-points.
Figure 1.8 shows the result of the accuracy test. It can be observed that the

actual order of accuracy of the method is not exactly 4, but nearly 3. This is
probably due to the fact that we are not imposing the boundary conditions on the
characteristic variables. If we wanted to do this really accurately, we should resort
to the techniques discussed in Appendix A.

It may also be possible that the order of accuracy of the method is not exactly 4
because the Couette-Poiseuille flow is an exact solution to the Navier-Stokes equa-
tions, but not to the BGK model. Thus the error in the convergence behaviour may
not be due to the numerical scheme, but to the modelling. Further investigations
are left for future work.
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Figure 1.8: Accuracy test.
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2

A PML for the BGK model

There is no branch of mathematics, however abstract, which may not some
day be applied to phenomena of the real world.

– Lobachevsky

The PML technique was originally introduced in 1994 by Bérenger [3], who devel-
oped it by starting from physical considerations on electromagnetic waves. Bérenger
modified Maxwell’s equations so that waves getting into the absorbing layer decay
without reflections at the interface. In his original formulation Bérenger adopted a
splitting technique of the Maxwell’s equations. Later it was shown that such splitting
technique breaks the hyperbolicity of the system, leading to numerical instabilities
in long time simulations.

In 2003, Hagstrom [17] proposed a new technique for developing PMLs for hyper-
bolic systems. This approach is based on the modal analysis in Laplace-Fourier space
and it makes the solutions inside the PML decay as they propagate. Hagstrom’s
paper, along with the theory for developing PMLs for linear hyperbolic systems, is
discussed in Appendix B.

By following in the steps of Hagstrom, Appelö et al. [2] developed a thorough
mathematical analysis of PMLs for linear hyperbolic systems by providing general
tools to establish stability and well-posedness.

2.1 The BGK+PML model

We emphasize that the approach of [17] and [2] is applicable only to linear hyperbolic
systems and that our BGK model (1.5) contains a nonlinear term. Nonetheless, if
the nonlinear term SNL(a) appearing in (1.5) is neglected, then the BGK model is
indeed a linear hyperbolic system and hence it is possible to apply the technique
proposed by Hagstrom to construct a PML for this problem.

This path has actually been pursued by Gao et al. [11], who neglected the
nonlinear term in (1.5), followed the approach proposed by Hagstrom to construct a
PML for the BGK model1, and finally appended the nonlinear term at the equations.
Here we just give the final result they obtained.

1In the following, we will simply refer to the BGK model coupled with a PML as the BGK+PML
model.
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The full absorbing layer formulation for (1.4) is

∂a

∂t
+ A1

(
∂a

∂x1

+ σ1 (λ0a+ ω)

)
+ A2

(
∂a

∂x2

+ σ2

(
λ̃0a+ θ

))
= S(a),

∂ω

∂t
+ α1

∂ω

∂x2

+ (α0 + σ1)ω +
∂a

∂x1

+ λ0(α0 + σ1)a− λ1
∂a

∂x2

= 0,

∂θ

∂t
+ α̃1

∂θ

∂x1

+ (α̃0 + σ2)θ +
∂a

∂x2

+ λ̃0(α̃0 + σ2)a− λ̃1
∂a

∂x1

= 0,

(2.1)

where ω and θ are auxiliary variables and α0, λ0, α1, λ1, α̃0, λ̃0, α̃1, λ̃1 are some pa-
rameters. The damping functions in the x- and y-directions are σ1 and σ2, respec-
tively.

2.2 Perfect matching
The key idea behind the PML is that the eigenfunctions for the eigenvalue problem
inside the layer have to be the same as outside the layer. This is the most straight-
forward way to design a PML so that reflections at the PML interface are prevented
[17]. In the following, we are going to verify that this is actually the case for the
BGK+PML model (2.1).

We consider the homogeneous case of the first equation in (2.1) for a PML
developing in the x1-direction only, with σ1 being a constant for the sake of simplicity.
Hence the governing equation outside the layer is

∂a

∂t
+ A1

∂a

∂x1

+ A2
∂a

∂x2

= 0,

with a Laplace-Fourier transform as

(sI + λA1 + ik2A2)φ(x1, ik2, s) = 0, (2.2)

and the modal solution outside the layer being

â = eλx1φ(x1, ik2, s).

Inside the layer, the governing equation is

∂a

∂t
+ A1

(
∂a

∂x1

+ σ1 (λ0a+ ω)

)
+ A2

∂a

∂x2

= 0. (2.3)

This equation has been constructed on the basis of the following Ansatz for the
modal solution inside the layer:

âPML = e
λx1+

[
λ−λ1ik2+λ0α0
s+α1ik2+α0

−λ0
]
σ1x1φ(x1, ik2, s). (2.4)

It can be shown (see Appendix C) that the Laplace-Fourier transform of (2.3) yields(
sI +A1

((
I − σ1

r̂ + σ1

)(
∂

∂x1
+ σ1λ0

)
+

σ1

r̂ + σ1
(λ1ik2 − λ0α0)

)
+ ik2A2

)
âPML = 0.
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By inserting the Ansatz for the modal solution inside the layer (2.4) into the last
equation, and approaching the PML interface (i.e. letting σ1 → 0), one can see that
equation (2.2) is recovered. This is exactly what we wanted: the eigenfunctions for
the governing equations recast in the Laplace-Fourier space remain the same across
the PML interface.

In all their simulations, Gao et al. [11] assumed the parameters as

λ1 = 0, λ0 = 0, α1 = 0, α0 6= 0,

λ̃1 = 0, λ̃0 = 0, α̃1 = 0, α̃0 6= 0.

The choice of these parameters, together with the fact that the precise role of each
parameter is not well understood yet, leaves room for further study that we are
going to pursue in this work.

2.3 Our study case

Hereinafter we will always consider a PML along the x1-direction only, as in the
example of Figure 1. This is equivalent to say that we set σ2 = 0, so that the system
(2.1) turns into


∂a

∂t
+ A1

(
∂a

∂x1

+ σ1 (λ0a+ ω)

)
+ A2

∂a

∂x2

= S(a),

∂ω

∂t
+ α1

∂ω

∂x2

+ (α0 + σ1)ω +
∂a

∂x1

+ λ0(α0 + σ1)a− λ1
∂a

∂x2

= 0.

(2.5)

For the system (2.5), we report in Table 2.1 a summary of the parameters and their
occurrence in the equations, which will turn out to be useful later.

Parameter Occurrence

λ0 Once in the a equation and once in the ω equation, in both cases
controlling the behaviour of the linear term in a. We note that, in
the ω equation, λ0 appears as a coefficient of a only if α0 6= 0.

λ1 Once in the ω equation, as a multiplying coefficient of the derivative
of a with respect to x2.

α0 Twice in the ω equation, the first time as a coefficient of the linear
term in ω and the second time as a coefficient of the linear term in
a. We note that, in the ω equation, α0 appears as a coefficient of
a only if λ0 6= 0.

α1 Once in the ω equation, as a multiplying coefficient of the derivative
of ω with respect to x2.

Table 2.1: Occurrence of the parameters of the BGK+PML model (2.5).
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2.4 Damping functions
The σ1 ≥ 0 and σ2 ≥ 0 appearing in (2.1) are the damping functions, which are
assumed to be smooth and equal to zero at the PML interface. In general we assume
a damping function σ of the form

σ(x) = C

(
x− x0

L

)β
,

where x0 represents the abscissa at which the PML begins, L is the thickness of
the layer, and the exponent β is used to control the smoothness of the absorption
profile. The constant C represents the overall strength of the absorption and it is
usually chosen as the inverse of the time-step C ' (∆t)−1 to avoid restriction on
the time-step caused by the PML. Figure 2.1 illustrates the shape of the damping
function σ1 on the computational domain of the BGK+PML problem.

L x

σ1

} }
L }

L y

x

y

Figure 2.1: Illustration of the damping function σ1.

2.5 The role of S(a)
In constructing equations (2.1), Gao et al. [11] neglected the whole of S(a), but it
turns out that even when taking into account the linear part and following the same
steps, one recovers the same equations. In other words, if instead of looking at the
homogeneous system we take the inhomogeneous system with just the linear terms,
then in fact the theory in [2] can already treat this and we get the same equations.

The next step for an improvement would be to linearize the term SNL(a). In fact
it turns out that, if the time-step ∆t is small enough, then one can assume that the
variables a of the BGK model are constant over ∆t. In other words, when we go
from tn to tn+1, we keep the values of a locally constant in time, and we just use an.
This is what we have done in our code: when, at time tn+1, we have to compute the
stresses σ11, σ22, σ12 that appear in S(a), we calculate them by using the numerical
solution an that we have already found at time tn.
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2.6 Flowchart of the BGK+PML code
The code for the BGK+PML model is similar to the one for the plain BGK, but
here we also need to set up the PML parameters, the damping function σ1 and to
solve the additional equations for the auxiliary variables.

Figure 2.2 shows a flowchart for the BGK+PML code2. The function StartUpBGKPML
defines the computational domain, computes a stable time-step, sets the initial con-
ditions for the BGK coefficients, with a peak in the initial density distribution, and
initializes the auxiliary variables and the damping functions of the PML. Inside
the loop the integration of the 2D BGK+PML equations (2.5) is performed until
FinalTime is reached. The function BGKPML_RHS2D imposes the boundary condi-
tions and evaluates the right-hand of the BGK+PML equations using the 4th order
accurate centered finite difference scheme. The function PlotBGKPML2D is optional
and allows us to visualize the time evolution of either the BGK variables or the
physical variables.

Driver_BGKPML

StartUpBGKPML

while t<FinalTime

BGKPML_RHS2D

PlotBGKPML2D

End

Figure 2.2: Flowchart of the BGK+PML code.

2There are some other subroutines that, for the sake of readability, are not reported here. At
any rate, all the documentation can be found in the code.

21



2. A PML FOR THE BGK MODEL

2.7 Simulations

In this section we discuss and report the results of some simulations that have been
carried out to assess to which extent the BGK+PML model (2.5) is capable of
accurately reproducing the results of the plain BGK model. We first detail the
parameters used in the simulations with the BGK+PML model, and point out the
differences with respect to the simulations with the plain BGK model.

We consider a square domain Lx = Ly = 1.00, with an absorbing PML at the
right-hand boundary and with wall boundary conditions on all the others. We have
20 grid-points in each direction, so that the mesh-size is equal to ∆x = ∆y = 0.0526.

We also need to decide the parameters of the damping function σ1. In our
implementation, the thickness of the PML is to be specified as a percentage of the
width of the domain Lx. In this case Lx = 1.00 so the PML thickness factor coincides
with the PML thickness, but in general this is not needed. For our simulations
hereinafter we choose a PML thickness of L = 0.40. The exponent β appearing
in the expression of σ1 has been set to 4, while the overall absorption strength is
calculated as C = 1/∆t. We note that σ1 does not vary in time.

In order to generate a propagating wave in our domain we can perturb the initial
density distribution. A reasonable choice is to assume an initial density distribution
with a peak located at the centre of the domain:

a0(x, y, t = 0) = 2 (pin − pout) exp
[
−ε
√

(x− x0)2 + (y − y0)2
]

+ 1.00,

where
x0 = Lx/2, y0 = Ly/2.

The factor ε at the exponent is set to ε = 10 to ensure a quick spatial decay of the
peak, since we want all of its support to be outside the PML.

At the initial time, the velocity and the auxiliary variables ω are set equal to
zero everywhere in the domain.

For the BGK model without the PML, we choose to keep exactly the same data,
with the only exception of LBGK

x being approximately 2.5 × Lx (the exact value
depends on the mesh-size ∆x). This is done because we have to guarantee that any
wave propagating in the positive x-direction has sufficient space to propagate. At
any rate, the additional computational cost if we want to simulate a decaying wave
without the PML is clear.

In all of the following simulations, we keep the parameters of the PML equal to
zero except for α0 which is set to 1:

λ1 = 0, λ0 = 0, α1 = 0, α0 = 1.

We choose the simulation time FinalTime to be 1.00, which is sufficient to allow
the wave to enter into the PML, so that we can observe how the presence of the
PML affects the simulation.

In the following pages we report the snapshots of the density distribution and
the velocity field at different times. The coloured contours represent the density
distribution, while the vectors depict the velocity field.
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2. A PML FOR THE BGK MODEL

Figure 2.3 illustrates the initial conditions of the problem, for both the BGK
and the BGK+PML models. We note that the peak in the initial density is entirely
located in the original domain Lx × Ly, outside the PML.

Figure 2.4 shows the visual outcome of the simulations at t = 0.70. At this time
the wave has already entered into the PML, which in turns has already begun to
damp out the wave. This can be readily observed by comparing Figures 2.4a and
2.4b. We note that the waves do not decay immediately as they enter into the PML,
due to the shape of the damping function σ1. In fact, the strength of the absorption
becomes larger as the waves further penetrate into the PML. This is also highlighted
by the velocity vectors shrinking down to points as one moves towards the end of
the PML.

Figure 2.5 shows the final outcome of the simulations. Figure 2.5a emphasizes
the presence of waves propagating to the right, while in Figure 2.5b those waves
have been damped out thanks to the PML. If one compares the solution on the
domain Lx × Ly in Figure 2.5a with the one in Figure 2.5b, one can conclude that
from a qualitative point of view the BGK+PML model is behaving nicely. We can
notice only minor differences and no significant signs of reflections. As expected,
not only the waves entering in the PML have been absorbed, but most importantly
they have not affected the solution on the original domain Lx × Ly.

From Figures 2.3, 2.4 and 2.5 it appears that the BGK+PML model is qualita-
tively capable of reproducing the results obtained with the plain BGK. The more
systematic and quantitative analysis are left for the remaining chapters.

As we have seen, the role and the importance of the parameters appearing in
the BGK+PML model is not yet well understood. In what follows we will try to
improve our understanding of the BGK+PML model (2.5), first by carrying out a
stability analysis to establish reasonable bounds on the parameters, and then by
performing a sensitivity analysis.
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(a) BGK.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) BGK+PML.

Figure 2.3: Initial density distribution and velocity field.
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(b) BGK+PML.

Figure 2.4: Density distribution and velocity field at t = 0.70.
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(b) BGK+PML.

Figure 2.5: Density distribution and velocity field at t = 1.00.
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3

Stability analysis

Whenever possible, a problem should be analyzed and put into a proper
form before it is run on a computer. An analysis is necessary to establish
confidence in the alleged results. But analysis may also be valuable in that
it can often establish early in the game ways of carrying out a computation
which will save time. One good thought may be worth a hundred hours on
the computer.

– Davis and Rabinowitz

In this chapter we are going to study the stability of the BGK+PML model
through a couple of techniques to check stability of differential systems. In particu-
lar, we will analyse the problem by:

• enforcing energy decay;

• continued fraction expansion.

A key role in both of these methods is played by the symbol of the differential
operator of the system. The analysis carried out in this chapter is going to provide
us with some reasonable bounds on the parameters appearing in the BGK+PML
model. These bounds will then be used in the following chapter to choose carefully
the parameters for the simulations needed to perform a sensitivity analysis.

3.1 The symbol of the BGK+PML model

We recall that the governing equations of the BGK+PML model are:

∂a

∂t
+ A1

(
∂a

∂x1

+ σ1 (λ0a+ ω)

)
+ A2

(
∂a

∂x2

+ σ2

(
λ̃0a+ θ

))
= S(a),

∂ω

∂t
+ α1

∂ω

∂x2

+ (α0 + σ1)ω +
∂a

∂x1

+ λ0(α0 + σ1)a− λ1
∂a

∂x2

= 0,

∂θ

∂t
+ α̃1

∂θ

∂x1

+ (α̃0 + σ2)θ +
∂a

∂x2

+ λ̃0(α̃0 + σ2)a− λ̃1
∂a

∂x1

= 0.

(3.1)
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3. STABILITY ANALYSIS

This system can be rewritten in matrix form as

∂

∂t

aω
θ

 = −



A1

(
∂

∂x1
+ σ1λ0

)
+A2

(
∂

∂x2
+ σ2λ̃0

)
A1σ1 A2σ2

I

(
∂

∂x1
+ λ0(α0 + σ1)− λ1

∂

∂x2

)
I

(
α1

∂

∂x2
+ α0 + σ1

)
O

I

(
∂

∂x2
+ λ̃0(α̃0 + σ2)− λ̃1

∂

∂x1

)
O I

(
α̃1

∂

∂x1
+ α̃0 + σ2

)


aω
θ

 .

We refer to the matrix on the right-hand side as the differential operator of the
system and we denote it by P ≡ P (∂/∂x1, ∂/∂x2). Moreover, we denote [a, ω, θ]T

by u ≡ u(x1, x2, t). Hence we are dealing with a general system of the type:

ut = Pu, (3.2)

whose initial condition can be expressed by:

u(x1, x2, t = 0) = f(x1, x2).

The stability of such a problem can be studied by means of Fourier analysis (often
called also Von Neumann analysis). In fact, if we perform a Fourier transform of
(3.2) (or, equivalently, hypothesize a periodic solution, compute its Fourier series
with complex coefficients, and insert it into (3.2)) we get:

dû

dt
= P̂ û, (3.3)

û(k1, k2, t = 0) = f̂(k1, k2),

where û ≡ û(k1, k2, t) are the modes and P̂ ≡ P̂ (ik1, ik2) is called the symbol of
the differential operator P . Equation (3.3) is a recasting of (3.2) in the frequency
domain, with k1, k2 being the Fourier variables. Moreover, (3.3) is a system of
ordinary differential equations with constant coefficients, having solution

û = eP̂ tf̂(k1, k2). (3.4)

This recasting in the frequency domain of our original problem (3.1) is useful because
it turns a differential problem into an algebraic problem, and there are results based
on the symbol P̂ to establish well-posedness and stability (see, for instance, [16]).

Since we are dealing with a wave-dominated problem, it is reasonable to expect
that the solution û in (3.4) will be evolving in a decaying fashion with time. In
the light of this, and because of the properties of the matrix exponential eP̂ t, the
following necessary condition for well-posedness should not be a surprise.

Theorem 3.1 (Petrovskii condition). A necessary condition for well-posedness
of (3.2) is that, for all k, the eigenvalues λ of P̂ (ik) satisfy the inequality
Re(λ) ≤ α, with α being a positive constant.
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3. STABILITY ANALYSIS

3.2 Stability analysis via the energy decay
It is also possible to work out a stability condition by enforcing energy decay over
time. We left-multiply (3.3) by the conjugate transpose of û, denoted û∗:

û∗
dû

dt
= û∗P̂ û, (3.5)

then we take the conjugate transpose of (3.3):

dû∗

dt
= û∗P̂ ∗,

with P̂ ∗ denoting the adjoint of the symbol P̂ . Next step is to right-multiply last
equation by û:

dû∗

dt
û = û∗P̂ ∗û, (3.6)

and then add together (3.5) and (3.6) to obtain:

û∗
dû

dt
+

dû∗

dt
û = û∗P̂ û+ û∗P̂ ∗û.

We note that the left-hand side of the last equation is indeed the time rate of change
of an energy:

û∗
dû

dt
+

dû∗

dt
û =

d

dt
(û∗û) =

d

dt
‖û‖2,

so that:
d

dt
‖û‖2= û∗(P̂ + P̂ ∗)û.

Since we want the energy to decay over time, we finally have the condition:

P̂ + P̂ ∗ < 0.

This proves the following theorem, in the special case α = 0.

Theorem 3.2. The initial value problem is well-posed if there is a constant α
such that, for all k,

P̂ (ik) + P̂ ∗(ik) ≤ 2αI.

We note that in our case this last condition will be necessary but not sufficient,
because we assume that the solution is periodic, but in general it is not. To put it
in slightly different words, the above condition is useful to get a sense about what
the parameters do, but it does not provide us with a complete picture, because we
have assumed periodicity in space.

After this short detour, let’s now go back to the differential operator for our
problem:

P = −



A1

(
∂

∂x1
+ σ1λ0

)
+A2

(
∂

∂x2
+ σ2λ̃0

)
A1σ1 A2σ2

I

(
∂

∂x1
+ λ0(α0 + σ1)− λ1

∂

∂x2

)
I

(
α1

∂

∂x2
+ α0 + σ1

)
O

I

(
∂

∂x2
+ λ̃0(α̃0 + σ2)− λ̃1

∂

∂x1

)
O I

(
α̃1

∂

∂x1
+ α̃0 + σ2

)


,
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and compute the symbol P̂ :

P̂ = −


A1(ik1 + σ1λ0) +A2(ik2 + σ2λ̃0) A1σ1 A2σ2

(ik1 + λ0(α0 + σ1)− iλ1k2) I (iα1k2 + α0 + σ1) I O

(ik2 + λ̃0(α̃0 + σ2)− iλ̃1k1) I O (iα̃1k1 + α̃0 + σ2) I

 .

By enforcing the condition P̂ + P̂ ∗ < 0 the following inequalities can be obtained:

−2λ0σ1 < 0,

−2λ̃0σ2 < 0,

−λ0(α0 + σ1) + i(k2λ1 − k1) < 0,

−σ1 < 0,

−λ̃0(α̃0 + σ2) + i(k1λ̃1 − k2) < 0,

−σ2 < 0,

−2
√

2λ0σ1 < 0,

−
√
σ1 < 0,

−2
√

2λ̃0σ2 < 0,

−
√
σ2 < 0,

−λ0(α0 + σ1) + i(k1 − k2λ1) < 0,

−2(α0 + σ1) < 0,

−λ̃0(α̃0 + σ2) + i(k2 − k1λ̃1) < 0,

−2(α̃0 + σ2) < 0.

Since σ1, σ2 ≥ 0, the conditions on the parameters are:

λ0 > 0,

λ̃0 > 0,

α0 > −σ1,

α̃0 > −σ2.

We note that the parameters α1 and α̃1 disappear when we take P̂ + P̂ ∗. Moreover,
the parameters λ1 and λ̃1 are involved in the imaginary parts in which k1 and k2 do
appear; this means that in principle they can take any value.
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3.3 Stability analysis via continued fractions

Appelö et al. [2] proposed another way to study stability, without using the symbol
of the differential operator. They studied the sign of the eigenvalues of the symbol P̂
by means of the following theorem1 by Frank [8], which can be found also in Marden
[22].

Theorem 3.3 (Evelyn Frank, 1946). Consider any polynomial q(z) of degree
n. Let D be a real number and define the polynomials Q0 and Q1 with real
coefficients by

q(iD) ≡ in[Q0(D) + iQ1(D)].

Then there is a continued fraction

Q1(D)

Q0(D)
=

1

c1D + d1 −
1

c2D + d2 −
1

c3D + d3 − · · · −
1

cnrD + dnr

with cj 6= 0 and nr ≤ n. The number of roots of q(z) with positive (negative)
real part equals the number of positive (negative) cj. Moreover, there are n− nr
roots on the imaginary axis.

There are several important points to notice about this theorem. The first one
is that we must be able to write any polynomial q(z) in such a way that we can
read off the polynomials of real variable Q0 and Q1. This rewriting can always (and
easily) be achieved. Secondly, we must be able to write the rational function Q1/Q0

in a continued fraction form. Also this can always be achieved, since there is an al-
gorithm that makes recursive use of the Euclidean division between polynomials, no
matter how complicated the rational function of departure, and returns the contin-
ued fraction expansion. Nonetheless, the calculations are far more tedious. Notice
also that the total number of coefficients cj appearing in the above expression may
be less than the polynomial degree (nr ≤ n). Finally, we note that the theorem is
also telling us that n − nr roots lie on the imaginary axis, namely those that have
zero real part.

If we apply the above theorem to the characteristic polynomial of the symbol P̂ ,
we can determine the sign of its eigenvalues, which is exactly the information we
need in order to apply the Petrovskii condition. This implies that all the coefficients
cj in Theorem 3.3 must be defined and negative.

Characteristic polynomial of P̂ . The characteristic polynomial p(z) of the sym-
bol P̂ factorizes as

p(z) = z2 (z + α̃0 + ik1α̃1)6 (z + α0 + ik2α1 + σ1)2 µ4(z) ν4(z),

1This technique in fact turns out to be very similar to the Routh–Hurwitz stability criterion,
often used in control theory. We point out this connection in Appendix D.
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where µ4(z) and ν4(z) are two fourth degree polynomials:

µ4(z) =
(
z2 + k2

1 + k2
2

)
(z + α0 + ik2α1)2 + 2 (z + α0 + ik2α1)×

×
(
k2

2 + z (z − ik1λ0) + k1k2 (α1λ0 + λ1)
)
σ1+

+
(
−z2

(
−1 + λ2

0

)
− 2izk2λ0 (α1λ0 + λ1) + k2

2

(
1 + (α1λ0 + λ1)2))σ2

1,

ν4(z) =
(
z2 + 3k2

1 + 3k2
2

)
(z + α0 + ik2α1)2 + 2 (z + α0 + ik2α1)×

× (z (z − 3ik1λ0) + 3k2 (k2 + k1 (α1λ0 + λ1)))σ1+

+
(
z2
(
1− 3λ2

0

)
− 6izk2λ0 (α1λ0 + λ1) + 3k2

2

(
1 + (α1λ0 + λ1)2))σ2

1.

It has to be noticed that the parameters λ̃0 and λ̃1 do not appear in the characteristic
polynomial, which is a signal that they can take any value.

From the expression of its characteristic polynomial it is clear that P̂ has two
zero eigenvalues. Then there is six times the eigenvalue z = −α̃0 − ik1α̃1, which
implies the condition

α̃0 > 0,

and twice the eigenvalue z = −α0 − ik2α1 − σ1, which implies

α0 > −σ1,

These two conditions agree with those found in Section 3.2.
The polynomials µ4(z) and ν4(z) are fourth degree polynomials, so, in principle,

they admit an algebraic solution in closed-form. However, the closed-form expression
of the solution is too long to allow analysis.

In what follows we apply Theorem 3.3 to µ4(z) and ν4(z) separately to work out
their respective continued fraction expansions as the one showed in Theorem 3.3.

3.3.1 Application of Theorem 3.3 to µ4(z)

The first coefficient in the continued fraction expansion of µ4(z) turns out to be:

c1 = − 1

2(α0 + σ1)
,

which is defined if α0 6= −σ1, and it is negative if

α0 > −σ1,

which agrees with the condition found above.
The second coefficient in the expansion is

c2 = −2(α0 + σ1)3/
[
α4

0 + α0

(
k2

1 + 4α2
0 − k1k2(2α1λ0 + λ1)

)
σ1+

−
(
α2

0(−6 + λ2
0) + k2

1(−1 + λ2
0) + k1k2(2α1λ0 + λ1)

)
σ2

1+

− 2α0(−2 + λ2
0)σ3

1 − (−1 + λ2
0)σ4

1

]
.
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Case σ1 → 0. To simplify the analysis, we consider the limit case in which we are
approaching the PML interface, that is equivalent to σ1 → 0. In this case we drop
the higher order terms in σ1, and c2 becomes

c2 = − 2(α0 + σ1)3

α4
0 + α0 (k2

1 + 4α2
0 − k1k2(2α1λ0 + λ1))σ1

.

Then the questions remain the same: is c2 defined? and, if it is defined, is it
negative? To answer both these questions, we have to check when the denominator
of c2

f(k1, k2) = α4
0 + α0

(
k2

1 + 4α2
0 − k1k2(2α1λ0 + λ1)

)
σ1 (3.7)

is positive.
To gain insight into the sign of the denominator we plot the surface f(k1, k2)

for a given set of the parameters. Figure 3.1 shows the surface of f(k1, k2) together
with the horizontal plane z = 0, in the domain (k1, k2) ∈ [−1000,+1000]2.

Figure 3.1: Plot of f(k1, k2) for some set of the parameters, with (2α1λ0 + λ1) 6= 0.

Since f(k1, k2) negative implies c2 positive, the regions of instability are those
where f(k1, k2) is negative. It is evident from Figure 3.1 that there are regions where
f(k1, k2) is negative, and the boundaries of such regions are given by the intersection
between the surface f(k1, k2) and the horizontal plane z = 0. Figure 3.2 shows the
two branches of the equation f(k1, k2) = 0. The triangular regions are regions of
instability, as in these regions c2 is positive.
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0 k 1

k 2

instability

region

Figure 3.2: The instability region implied by c2.

In what follows, we seek an analytical expression for the boundaries of the in-
stability regions. Starting from f(k1, k2) > 0, we work out k2 as a function of k1

α3
0 +

(
k2

1 + 4α2
0 − k1k2(2α1λ0 + λ1)

)
σ1 > 0,

α3
0 + k2

1σ1 + 4α2
0σ1 − k1k2(2α1λ0 + λ1)σ1 > 0,

α3
0 + k2

1σ1 + 4α2
0σ1 > k1k2(2α1λ0 + λ1)σ1.

For k1 = 0 one has
α3

0 + 4α2
0σ1 > 0,

which is always guaranteed. Instead, for k1 6= 0 one obtains
k2 <

α3
0 + (4α2

0 + k2
1)σ1

(2α1λ0 + λ1) k1σ1

if k1 > 0,

k2 >
α3

0 + (4α2
0 + k2

1)σ1

(2α1λ0 + λ1) k1σ1

if k1 < 0.

(3.8)

Since we would like to have no condition on k2, i.e. it should be allowed to take any
value, the only possibility is that the expression on the right-hand side of the last
inequalities is unbounded

α3
0 + (4α2

0 + k2
1)σ1

(2α1λ0 + λ1) k1σ1

→∞, ∀k1 6= 0,

and since k1σ1 6= 0, the only possibility is that

(2α1λ0 + λ1)→ 0, (3.9)
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which means that either λ0 = λ1 = 0, or α1 = λ1 = 0 or λ0 = −λ1/2α1. If we assume
that all the parameters are positive, then the third condition has to be discarded.
Moreover, all the numerical simulations have shown that in practice λ0 has to stay
zero, so that we are left only with the first condition

λ0 = λ1 = 0. (3.10)

In general, we can observe that the presence of the instability region is associated
with the presence of the mixed term in k1k2 in (3.7). If in some way the coefficient
of this mixed term is zero, then f(k1, k2) is always positive, it never intersects the
horizontal plane z = 0, and hence c2 is negative. Figure 3.3 illustrates this last case.

Figure 3.3: Plot of f(k1, k2) for some set of the parameters, with (2α1λ0 + λ1) = 0.

It can be seen that, by following the same procedure for ν4(z), one can find
the same results. The coefficients c3 and c4 of the continued fraction expansions,
however, have more complicated expressions that do not allow analysis.

Furthermore, we recall that we are only looking at the limit in which σ1 → 0,
so the above conditions may not be giving us the complete picture. However, the
analysis is confirmed by the fact that all the numerical simulations performed with
λ0 6= 0, λ1 6= 0, α0 6= 0, α1 6= 0 show that in these cases the BGK+PML model is
unstable. On the contrary, the simulations performed with λ0 = 0, λ1 = 0, α0 6=
0, α1 6= 0 show that in these cases the BGK+PML model is stable, but then there
is an accuracy issue to tackle. In the next chapter we are going to further develop
these aspects.
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4

Sensitivity analysis

The theory of integration formulas with polynomial degrees of accuracy is
closely connected to the theories of polynomial interpolation and orthogonal
polynomials. Both fields are considerably more complex when dealing with
several variables than when dealing with just one.

– Krommer and Ueberhuber

Now that we have established bounds on the parameters appearing in the BGK+PML
model, we need to assess how they impact the outcome of the simulations.

In the literature we can find many methods to sample a parameter space and
perform a sensitivity analysis. A good review is given in [1]. There the author
points out how models with many parameters often behave as if they really depend
on only a few, which impact the value of the target outcome. Besides yielding
accurate results, a good sampling method should also minimize the number of times
a model has to be run.

The most straightforward way to explore a parameter space would be to generate
a simple random sample of the parameters in some given intervals of variation.
Unfortunately, random sampling has a convergence rate of 1/

√
d, because of the law

of large numbers. In principle, a random sampling is correct, but if one has many
parameters, it proves to be inefficient and computationally expensive. In the most
general case that will be considered here, the parameter space will be 4-dimensional.
Hence we need to find a better way to systematically explore the parameter space.

The tool that we will use to gain insights into the role of our parameters is
the Analysis of Variance (ANOVA) expansion of multivariate functions and the
connected concept of Total Sensitivity Indices (TSIs) [5, 10, 24]. ANOVA expansions
turn out to be very useful when one wants to study functionals of solutions to
nonlinear partial differential equations. But before going deeper into these concepts,
we define our functional of interest.

4.1 Definition of the error functional

We have to define an outcome of the solution on which to focus our attention. The
preferred outcome will be a functional of the solution to our BGK+PML model. In
particular, we can choose it to be the maximum over time of the L2-norm of the
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error in the density a0 between the BGK+PML and the plain BGK, calculated along
a line close to the PML, and normalized with respect to the L2-norm of the initial
condition of the density a0 on that same line for the plain BGK. Synthetically:

g1 =

maxt∈[0,T ]

{[∫ Ly
0

(
aBGK+PML

0 (x∗, y, t)− aBGK
0 (x∗, y, t)

)2
dy
]1/2
}

[∫ Ly
0

(aBGK
0 (x∗, y, t = 0))

2
dy
]1/2

, (4.1)

where T is the total simulated time, x∗ is the abscissa at which the reference line
is located, while aBGK+PML

0 and aBGK
0 are the densities with and without the PML,

respectively. In the most general case that we will consider, this error functional
will depend on four parameters, namely α0, α1, the PML exponent β and the PML
thickness L. In Section 4.7.1 we will also make use of other functionals, but until
then we will stick to (4.1).
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Figure 4.1: Illustration of the construction of expression (4.2).
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4.2 Bounds on the parameters

4.2.1 λ0 and λ1 have to stay zero

In Section 3.3.1 we have seen from an analytical point of view that in order to
guarantee stability we must freeze the parameters λ0 and λ1 to zero. Here we are
going to show that the numerical simulations confirm these stability conditions. As
in (4.1), we consider the quantity[∫ Ly

0

(
aBGK+PML

0 (x∗, y, t)− aBGK
0 (x∗, y, t)

)2
dy
]1/2

[∫ Ly
0

(aBGK
0 (x∗, y, t = 0))

2
dy
]1/2

, (4.2)

and plot its time evolution, by performing a numerical simulation of the BGK+PML
model with the same data described in Section 2.7. Figure 4.1 qualitatively illus-
trates how expression (4.2) is computed.

From Figure 4.2 we observe that the error is very small throughout the simu-
lation, remaining in the order of 10−6, and also the visual outcomes (not reported
here) appear to be reasonable from the physical point of view. Now we redo the
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Figure 4.2: Time evolution of the L2-norm of the error in a0 on a vertical line close to the
PML. Reasonable results.

same simulation but setting λ0 = 0.05. The time evolution of the error is reported in
Figure 4.3, which shows that now the error is four order of magnitudes larger than
the one in Figure 4.2. It can also be seen from the visual outcomes (not reported
here) that the accuracy of the method in reproducing the physical behaviour is ir-
reversibly compromised. From all the numerical simulations performed it appears
that we must set λ0 and λ1 to zero to address the stability issues and to ensure
an accurate reproduction of the physical behaviour. This is in agreement with the
stability analysis carried out in Section ]3.3.1. We finally note that, even if we freeze
λ0 to zero, the parameter α0 still appears in the equations (2.5).

39



4. SENSITIVITY ANALYSIS

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

time−step

L
2
−

n
o

rm
 o

f 
th

e
 e

rr
o

r 
in

 a
0

Figure 4.3: Time evolution of the L2-norm of the error in a0 on a vertical line close to the
PML. Unreasonable results.

4.2.2 Bounds on the PML thickness

Later we will consider also the PML thickness L as a parameter to be analysed,
so we proceed to establish some appropriate lower bound on L before diving into
the ANOVA expansion. Figure 4.4 shows the time evolution of the L2-norm of the
error in a0 on a vertical line close to the PML, for several PML thicknesses, L =
{0.10, 0.15, 0.20, 0.25}. By looking at Figure 4.4 we can conclude that a reasonable
lower bound on the PML thickness L can be given by L = 0.25.
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Figure 4.4: Time evolution of the L2-norm of the error in a0 on a vertical line close to the
PML, for several PML thicknesses.
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4.3 ANOVA expansion of multivariate functions
Let P = {1, 2, . . . , p} be the set of coordinate indices of a p-dimensional function,
and let α = (α1, α2, · · · , αp) ∈ Rp be a p-dimensional vector. Let T ⊆ P be a
subset of P , and let t denote the cardinality of T , i.e. the number of elements in
T . We denote by αT ∈ Rt the t-dimensional vector that contains the components
of α ∈ Rp indexed by T . Furthermore, we denote by Ap the p-dimensional unit
hypercube [0, 1]p, and At the t-dimensional unit hypercube which is the projection
of the p-dimensional unit1 hypercube Ap onto the coordinates indexed by T . Then
any p-dimensional function g ∈ L2(Ap) can be written as the ANOVA expansion
[5, 10, 24]:

g(α) = g0 +
∑
T ⊆P

gT (αT ), (4.3)

where the terms in the expansion are calculated recursively through

gT (αT ) =

∫
Ap−t

gT (αT ) dαP\T −
∑
W⊂T

gW(αW)− g0, (4.4)

starting with the zero-th order term (which is just a constant):

g0 =

∫
Ap
g(α) dα,

and where, by convention, ∫
A0

g(α) dα∅ = g(α).

Each term gT (αT ) in the ANOVA expansion is, in general, a nonlinear function of
its t arguments, and it is the unique term in the expansion that depends on the t
variables indexed by T . In other words, the term gT (αT ) describes the effect within
g(α) when those t arguments are simultaneously taken into account.

We emphasize that dαP\T in (4.4) indicates integration over all those coordinate
indices not included in T , and that the sum is carried out over strict subsets W of
T . The operation (4.4) can actually be regarded as a projection, since the resulting
function will depend only on the coordinate indices contained in T . The total
number of terms in the ANOVA expansion is 2p.

We point out that the ANOVA expansion is exact and contains a finite number
of terms, even though we can truncate it to obtain a good approximation to g(α),
having less terms than the full expansion. Then the natural question arises about
what is meant by good approximation, and trying to answer this question leads us
to the concept of effective dimension of multivariate functions (see sections 4.3.2
and 4.3.3).

We hope to make things clearer by writing down explicitly the expressions to
calculate the first few terms in the ANOVA expansion. We define the order of a
term gT (αT ) appearing in the ANOVA expansion (4.3) as the cardinality t of the

1We note that the keyword here is unit. We will come back to this later.
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corresponding set T . So the case t = 1 generates the first order terms, or univariate
functions, given by

gi(αi) =

∫
Ap−1

g(α) dα′ − g0, i = 1, 2, . . . , p,

where dα′ indicates integration over all coordinates except αi.
The case t = 2 generates the second order terms, or bivariate functions, given by

gij(αi, αj) =

∫
Ap−2

g(α) dα′′ − gi(αi)− gj(αj)− g0, i < j, i, j = 1, 2, . . . , p,

where dα′′ indicates integration over all coordinates except αi and αj.
The case t = 3 generates the third order terms, or trivariate functions, given by

gijk(αi, αj, αk) =

∫
Ap−3

g(α) dα′′′ − gij(αi, αj)− gik(αi, αk)− gjk(αj, αk)

− gi(αi)− gj(αj)− gk(αk)− g0, i < j < k, i, j, k = 1, 2, . . . , p,

where dα′′′ indicates integration over all coordinates except αi, αj and αk, and so
on. Note that, as we go to higher order, i.e. as t increases, the dimensionality of the
integrals that we need to compute to construct the expansion decreases. Moreover,
the total number of t-th order terms is given by the binomial coefficient(

p

t

)
=

p!

t! (p− t)!
.

The ANOVA expansion of g(α) is finally written as

g(α) = g0 +

p∑
i

gi +

(p2)∑
i,j

gij +

(p3)∑
i,j,k

gijk + · · · .

From a computational point of view it is apparent that the bottleneck is given by the
evaluation of the many multidimensional integrals needed to construct the expan-
sion. This aspect should not be underestimated because it might be a hindrance to
the efficiency of the algorithm. We will discuss multivariate integration techniques
later in Section 4.4.

4.3.1 Properties of the ANOVA expansion

In this section we provide a list of the most important properties of the ANOVA
expansion, although some of them have already been mentioned in the previous
section. A full list can be found in [24].

• The ANOVA expansion of a general p-dimensional function g ∈ L2(Ap) is exact
and finite, and contains a total number of 2p terms;

• the zero-th order term g0 in (4.3) is an integral average of g over the entire
parameter space Ap, and it is a constant ;
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• the generic term gT (αT ) is a function only of the coordinates indexed by T ;

• the terms in the ANOVA expansion are mutually orthogonal, namely∫
Ap
gS(αS) gT (αT ) dα = 0,

whenever S and T contain at least one different index. This holds also when S
and T have the same cardinality. Note that when gS = g0 we get the particular
case ∫

Ap
g0 gT (αT ) dα = 0,

which, since g0 is constant, implies∫
Ap
gT (αT ) dα = 0,

meaning that the terms gT (αT ) in the ANOVA expansion have zero average.

• each term gT (αT ) in the expansion is a projection of g(α) onto a subspace of
L2(Ap), with respect to the L2(Ap) inner product.

4.3.2 The truncated ANOVA expansion

Definition 4.1. A truncated ANOVA expansion of order r is given by

g(α; r) = g0 +
∑

T ⊆P, t≤r

gT (αT ). (4.5)

The truncated ANOVA expansions are of great importance because it can often
be observed that g(α; r) with r � p already yields a good approximation to g(α).

Some consequences of approximating well a multivariate function g(α) by a
truncated ANOVA expansion g(α; r) are presented in [5]. For instance, if r � p,
then our g(α), which is a function of p arguments, can be well2 described by a
sum of terms each of which depends at most on r variables. This means that
the contributions provided by coordinate sets having more than r variables can be
disregarded. This leads us to the concept of effective dimension of a function.

4.3.3 The effective dimension of a function

As we have mentioned above, the ANOVA expansion is related to the concept of
effective dimension of a multivariate function [5].

Definition 4.2. The effective dimension of a multivariate function g in the super-
position sense or, in short, the superposition dimension, is the smallest integer r
such that ∑

0<t≤r

VT (g) ≥ q V (g),

where q > 0 is called proportion and it is typically chosen to be slightly less than 1;
q = 0.99 is a common choice.

2In the following section we will state more precisely what do we mean by well.

43



4. SENSITIVITY ANALYSIS

Here the terms VT (g) and V (g) are defined by

VT (g) =

∫
Ap

(gT (αT ))2 dα, V (g) =
∑
t>0

VT (g). (4.6)

Note that VT (g) is the integral average of the square of the terms appearing in the
ANOVA expansion, and can be regarded as a variability of g over a given set T .

Definition 4.3. Given a function g and its approximation h, the normalized ap-
proximation error is defined by

E(g, h) =
1

V (g)

∫
Ap

(g(α)− h(α))2 dα.

We have the following remarkable theorem about the approximation property of
the truncated ANOVA expansions.

Theorem 4.1. Assume that g(α) has superposition dimension r in proportion
q and let g(α; r) =

∑
0<t<r gT (αT ) denote its truncated ANOVA expansion of

order r. Then
E (g(α), g(α; r)) ≤ (1− q).

This theorem clarifies what we claimed in the previous section, i.e., if the su-
perposition dimension is small (r � p), then g(α) can be well approximated by a
truncated ANOVA expansion with only few terms. But what does the adverb well
in that sentence mean? By the previous theorem, it means that the error between
the ANOVA expansion and its truncation of order r is less than or equal to (1− q).

It has been shown in many practical applications that truncated ANOVA ex-
pansions of order two can already yield very good approximations to the original
function g [5, 10]. Usually the reality is that high-dimensional functions are not
truly high-dimensional. Multidimensional functions that really depend on the con-
nection between all the parameters are found quite seldom. In particular, usually
the bivariate terms in the ANOVA expansion do still matter, but if we take into
account even higher order terms, then we find that they make a small difference.
The ANOVA expansion is very useful because identifies how much structure hides
behind a multivariate function.

To illustrate that higher order terms always bring a minor contribution, we
consider a Gaussian test function

f(x) = exp
[
−
∑p

i=1c
2
i (xi − ωi)2

]
, (4.7)

where the coefficients c = (c1, . . . , cp) and ω = (ω1, . . . , ωp) are generated randomly.
We carry out the ANOVA expansion of a 4D Gaussian whose coefficients are

c = (0.122, 0.3627, 0.908, 0.5756),

ω = (0.989, 0.567, 0.9898, 0.3223)

Figure 4.5 shows the L2-norm of the error between the 4-dimensional Gaussian test
function and its truncated ANOVA expansions as a function of the order of the
truncated ANOVA expansion.
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Figure 4.5: Convergence behaviour of the truncated ANOVA expansion of a 4D Gaussian
test function as a function of the truncation order.

We can observe from Figure 4.5 that the contributions to the error become
smaller and smaller as the truncation order of the ANOVA expansion increases.

4.3.4 Total Sensitivity Indices

The Total Sensitivity Index (TSI) of a parameter αi measures the combined sensi-
tivity of all terms that depend on αi, i = 1, . . . , p. We define the sensitivity measure

ST =
VT
V
,

where VT and V are defined according to (4.6). The following result holds:∑
i∈T

ST +
∑
i/∈T

ST = 1,

where the first term is a sum of the sensitivity measures ST which contain the
coordinate index i and the second term is a sum of those ST that do not contain
it. We call the first term in the above expression the TSI(i) of variable αi. These
TSIs give us a feeling of which parameters are most important, and represent the
final goal of our computation of the ANOVA expansion. The multidimensional
integrals required to construct the ANOVA expansion do not need to be computed
very accurately, since from the TSIs we just want to get a sense of which parameters
matter the most.
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4.4 Multivariate numerical integration
We have seen that a central ingredient to compute the ANOVA expansion is to be
able to evaluate in a reasonable way the multidimensional integrals appearing in
(4.4). All the theory about the ANOVA expansion is based on the assumption that
these multidimensional integrals can be evaluated exactly. In our case this is not
possible since we do not have an analytic expression for g. When implementing, this
implies that we have to resort to multivariate numerical integration. The efficiency
and the accuracy of the integration methods adopted will affect the efficiency of the
calculations and the accuracy of the ANOVA expansion.

There are several approaches to evaluate multidimensional integrals, for instance:

• the Stroud cubature, which is the simplest approach and gives the minimum
amount of nodes to obtain a certain accuracy in high dimensions, but it cannot
provide very high accuracy;

• product rules, that allow to extend the many known univariate integration
formulas to higher dimensions. This approach allows to calculate the inte-
grals accurately, but it quickly becomes computationally expensive, because
the number of samples grows like np for a quadrature using n points in p di-
mensions. For instance, the Cartesian product with a Gaussian quadrature for
7 dimensions with 5 integration abscissas in each dimension needs 57 = 78125
evaluations, which is already a huge amount.

• the Smolyak construction, which is a sparse grid integration method.

We note that our final goal is to compute the TSIs of the parameters in order
to get a feeling of how they affect our output functional g. The evaluation of
the multivariate integrals does not need to be very accurate, because we are not
interested in the actual values of the TSIs, but in understanding how the parameters
relate to each other and which one is more important.

In what follows we review the integration techniques that have been considered
to compute the ANOVA expansion: the Stroud cubature formulas and the product
rules.

4.4.1 Stroud cubature

The simplest approach to perform a multi-dimensional numerical integration is given
by the so-called Stroud cubature points [25, 26], which can be used to calculate
integrals of the type:

I[g] =

∫
[−1,1]p

g(α) dα, (4.8)

where g is our p-dimensional functional, α = (α1, α2, · · · , αp) are the parameters
and [−1, 1]p is the p-dimensional reference hypercube. The only difference between
(4.8) and the integrals appearing in (4.4) is that the ANOVA expansion considers
the p-dimensional unit hypercube [0, 1]p, while the Stroud cubature works for the
hypercube [−1, 1]p. This suggests the use of a mapping in order to make the Stroud
cubature available to the unit hypercube [0, 1]p (see Section 4.4.2).
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To be rigorous, we should write g[u(α)] instead of g(α), since g is actually a
functional of the solution u(α) resulting from our simulation of the BGK model
coupled with the PML. In the following, we will stick to this little abuse of notation,
and simply write g(α).

Stroud cubature formula of degree 2

The Stroud cubature formula of degree 2 adopts p+ 1 equally weighted points (i.e.,
one more than the number of parameters we consider). The following theorem is of
interest [25]:

Theorem 4.2. A necessary and sufficient condition that p+ 1 equally weighted
points form a numerical integration formula of degree 2 for a symmetric region
or for a regular p-simplex is that these points form the vertices of a regular p-
simplex whose centroid coincides with the centroid of the region and lie on the
surface of a sphere of radius r =

√
p I2/I0, where

I0 =

∫
R

dv, I2 =

∫
R

x2
1 dv = · · · =

∫
R

x2
n dv.

Here I0 is the hypervolume, and the weight of the points is I0/(p+ 1).

This cubature formula yields the following approximation to the integral in (4.8):

I[u] ' 2p

p+ 1

p+1∑
i=1

g(αi),

where αi = (α1
i , α

2
i , · · · , α

p
i ), with i = 1, 2, . . . , p + 1, are the p + 1 p-dimensional

cubature points. The factor 2p at the numerator of the fraction in front of the sum
is actually the volume of the hypercube [−1, 1]p. The explicit point location is given
by:

α2r−1
i =

√
2

3
cos

(
2r (i− 1)π

p+ 1

)
, α2r

i =

√
2

3
sin

(
2r (i− 1) π

p+ 1

)
,

r = 1, 2, . . . , [p/2],

where [p/2] is the greatest integer not exceeding p/2, and if p is odd αpi = (−1)(i−1)/
√

3.

Stroud cubature formula of degree 3

The Stroud cubature formula of degree 3 makes use of 2p equally weighted points
to approximate (4.8) in the following way:

I[u] ' 2p−1

p

2p∑
i=1

g(αi),

where αi = (α1
i , α

2
i , · · · , α

p
i ), with i = 1, 2, . . . , 2p, are the 2p p-dimensional cubature

points. The location of the points is given by:

α2r−1
i =

√
2

3
cos

(
(2r − 1) iπ

p

)
, α2r

i =

√
2

3
sin

(
(2r − 1) iπ

p

)
,

47



4. SENSITIVITY ANALYSIS

r = 1, 2, . . . , [p/2],

where [p/2] is the greatest integer not exceeding p/2, and if p is odd αpi = (−1)i/
√

3.

4.4.2 Affine mappings

The Stroud cubature allows to numerically evaluate the integral of a function on the
reference hypercube [−1, 1]p. Usually all cubature formulas consider some reference
interval of integration, so that reasonable mappings are required to make these
formulas available to more general intervals. If we are dealing with interpolatory
formulas, then we have to use affine transformations, since these transformations
are the only ones that preserve the degree of a given polynomial under the mapping
[6].

In fact, the general multidimensional integral

I =

∫ U1

L1

∫ U2

L2

· · ·
∫ Up

Lp

f(x1, x2, . . . , xp) dx1 dx2 · · · dxp

can be transformed into an integral over a hypercube [−1, 1]p by means of the affine
transformation

xi =
Ui + Li

2
+ yi

Ui − Li
2

, i = 1, 2, . . . , p.

The determinant of the Jacobian matrix of this transformation is:

|J | =
p∏
i=1

(
Ui − Li

2

)
.

This transformation is very general and can be applied to any quadrature formula
to generalize it to any integration intervals.

For instance, in the case of the Stroud cubature formula of degree 2, we map the
p+ 1 Stroud cubature points according to:

α̃ji =
Ui + Li

2
+ αji

Ui − Li
2

, i = 1, 2, . . . , p+ 1 and j = 1, 2, . . . , p.

4.4.3 Univariate Gauss Formulas

In this section we review some results for univariate integration formulas and in the
next we will switch to multivariate integration.

We consider the definite integral of the function f(x) on the interval [a, b]

I[f ] =

∫ b

a

f(x) dx,

and define its numerical approximation as follows.

Definition 4.4. A weighted sum of function values

Qn(f) =
n∑
i=1

wi f(xi)
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is called a numerical n-point integration formula if it is in some sense an approxi-
mation of I[f ]. The sampling points x1, . . . , xn are called integration abscissas and
the values w1, . . . , wn are called integration weights. The abscissas and weights of
an integration formula must be independent of the function f .

The way we choose the integration abscissas defines uniquely a certain class of
interpolatory formulas. For instance, one can choose the integration abscissas as
the zeros of some classical orthogonal polynomials. In this case, we end up with the
so-called Gauss quadrature formulas.

The following theorem concerns the degree of exactness provided by the Gauss
quadrature formulas.

Theorem 4.3. The degree of exactness of an n-point quadrature formula

Qnf =
n∑
i=1

wi f(xi)

is 2n−1. This degree of exactness can be obtained by using the zeros of the n-th
orthogonal polynomial of degree n in [a, b] as the integration abscissas x1, . . . , xn
of the interpolatory formula.

As for the orthogonal polynomials, there are several possible choices, such as
Legendre polynomials, Laguerre polynomials, Hermite polynomials or Jacobi poly-
nomials. If we choose the Legendre polynomial of degree n, the integration abscissas
x1, . . . , xn are the zeros of this Legendre polynomial. The quadrature formulas ob-
tained by making this choice are called Gauss-Legendre formulas, and hereinafter
they will be denoted by Gn.

The usual domain of definition of the orthogonal polynomials is B̄ = [−1, 1].
This means that if [a, b] is an arbitrary interval we need to map the integration
abscissas x̄i (i.e., the zeros of the orthogonal polynomial) according to the affine
transformation

xi = x̄i
b− a

2
+
a+ b

2
, i = 1, 2, . . . , n,

and the corresponding integration weights are mapped according to

wi = w̄i
b− a

2
.

Compare with what we have seen in 4.4.2, and observe that here, differently from
the Stroud cubature, there are also integration weights to be mapped.

4.4.4 Construction of multivariate formulas by product rules

When dealing with one-dimensional integration, we know that we can count on a
wide variety of quadrature formulas, but to work out the ANOVA expansion we
need to be able to perform numerical integration of multidimensional functions, as
we have already pointed out. The simplest approach to extend the many known
univariate integration formulas to the case of multiple dimensions is by means of
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Cartesian products and product rules [6]. Let us consider B1 ⊆ Rd1 , a region in
d1-dimensional Euclidean space with points x1 ≡ (x1

1, x
1
2, . . . , x

1
d1

), and let B2 ⊆ Rd2

be a region in d2-dimensional Euclidean space with points x2 ≡ (x2
1, x

2
2, . . . , x

2
d2

).
The notation B1 × B2 indicates the Cartesian product of B1 and B2, namely the
region in the Euclidean space of d1 +d2 dimensions with points (x1,x2) that satisfy
x1 ∈ B1 and x2 ∈ B2.

Now if Q1
n1

is an n1-point univariate integration formula over B1,

Q1
n1

(f1) =

n1∑
i1=1

w1
i1
f1(x1

i1
) ≈

∫
B1

f1(x1) dx1, x1
i1
∈ B1,

and if Q2
n2

is an n2-point univariate integration formula over B2,

Q2
n2

(f2) =

n2∑
i2=1

w2
i2
f2(x2

i2
) ≈

∫
B2

f2(x2) dx2, x2
i2
∈ B2,

then with the name product rule of Q1
n1

and Q2
n2

we designate the n1n2-point rule
applicable to B1 ×B2 and defined by

(Q1
n1
×Q2

n2
)(f) :=

n1∑
i1=1

n2∑
i2=1

w1
i1
w2
i2
f(x1

i1
,x2

i2
) ≈

∫
B1×B2

f(x1,x2) dx1dx2.

We point out that x1
i1

and x2
i2

are the integration abscissas for x1 and x2, respec-
tively. The following theorem is of interest to us [6, 19].

Theorem 4.4. If Q1
n1

integrates f1(x1) exactly over B1, and if Q2
n2

integrates
f2(x2) exactly over B2, then the product rule Q1

n1
× Q2

n2
will integrate their

product
f(x1,x2) := f1(x1) f2(x2), x1 ∈ B1, x

2 ∈ B2,

exactly over the region B := B1 ×B2.

The product rule can be generalized to higher dimensions in a straightforward
fashion. Assume that the integration region B is a Cartesian product of p ≥ 3
regions B1, . . . , Bp, i.e. B = B1 × · · · × Bp. Let Qk

nk
denote the nk-point univariate

integration formulas over Bk

Qk
nk

(fk) =

nk∑
ik=1

wkikfk(x
k
ik

) ≈
∫
Bk

fk(x
k) dxk, k = 1, . . . , p,

then the product rule (Q1
n1
× · · · ×Qp

np)(f) is defined by

(Q1
n1
× · · · ×Qp

np)(f) :=

n1∑
i1=1

· · ·
np∑
ip=1

w1
i1
· · ·wpipf(x1

i1
, . . . ,xpip)

≈
∫
B

f(x1, . . . ,xp) dx1 · · · dxp.
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Usually product rules Q1
n1
× · · · × Qp

np whose constituent univariate integration
formulas are identical,

Q1
n1

= Q2
n2

= · · · = Qp
np = Qn,

are denoted as (Qn)p. For instance, let G5 be the univariate Gauss-Legendre integra-
tion rule over [−1, 1] (Section 4.4.3). Then G5×G5×G5×G5 (= (G5)4) is a product
rule of 625 points applicable to the 4-dimensional hypercube [−1, 1]4. It integrates
exactly the 104 monomials of the form xn1

1 x
n2
2 x

n3
3 x

n4
4 with 0 ≤ n1, n2, n3, n4 ≤ 9.

We must emphasize that here we are entering in dangerous waters, since the
product formula (Qn)p has np integration abscissas. It is apparent that if the di-
mension of the function to be integrated is increased by one, then the number of
integration abscissas is increased by a factor of n. This rapidly increasing computa-
tional cost makes the use of product formulas virtually impracticable unless we are
dealing with a moderate dimensionality (typically p ≤ 5).

In the tests that follow and in the application of the ANOVA expansion to
the BGK+PML model we will deal with functions having at most 6 dimensions.
With moderate numbers of dimensions it is still practicable to use the product rules
with Gauss-Legendre quadrature formulas. If instead one is willing to increase the
efficiency of the algorithm while at the same keeping the accuracy of the numerical
integration, then the sparse grid integration methods are really the way to go; see
[10] for the details.
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4.5 Some preliminary tests
Before applying to our BGK+PML model all the machinery that we have discussed
so far, we want to evaluate the calculation of the ANOVA expansion for some sim-
pler benchmark functions. In this section we provide some results for the ANOVA
expansion and the calculation of the TSIs for a subset of the classic test functions
[12, 13]. We consider the following test functions:

• Product Peak function: f1(x) =
∏p

i=1

[
c−2
i + (xi − ωi)2

]−1,

• Gaussian function: f2(x) = exp [−
∑p

i=1c
2
i (xi − ωi)2],

where the coefficients c = (c1, . . . , cp) and ω = (ω1, . . . , ωp) are generated randomly.
The plots in Figure 4.6 show the L2-norm of the error between the 4-dimensional

Gaussian function and its truncated ANOVA expansions as a function of the trunca-
tion order, where the numerical integration has been carried out according to several
quadrature formulas that we have discussed in the previous section. In Figures 4.6a
and 4.6b the Stroud cubatures of degree 2 and 3 have been used, respectively. To
obtain Figures 4.6c and 4.6d we built multivariate integration formulas by applying
the product rule to the Gauss-Legendre quadrature formula with 2 and 3 integra-
tion abscissas for each dimension, respectively. In all the cases, the variables x are
assumed to vary in the interval [−1, 1].

The four integration techniques above have also been used to compute the TSIs
for the variables of the 4-dimensional Gaussian that we considered in Section 4.3.3.
The TSI values are reported in Table 4.1, together with the exact values computed
with Mathematica R©.

x1 x2 x3 x4

Stroud-2 0.0263 0.0497 0.9291 0.0523
Stroud-3 0.0096 0.0284 0.9400 0.0583

(G2)4 0.0008 0.0200 0.9604 0.0405
(G3)4 0.0010 0.0249 0.9453 0.0600
Exact 0.0009 0.0239 0.9428 0.0598

Table 4.1: TSIs for a 4D Gaussian test function, computed according to different integration
formulas, and exact values.

It is clear from the table that (G3)4 is extremely good at approximating the
TSIs, but it also appears that Stroud-3 gives already a good indication about the
importance of the single variables.

However, if we look at Figure 4.6b it appears that Stroud-3 does not yet give
a nice convergence behaviour. What we are really looking for here is a trade-off
between reasonable efficiency and reasonable accuracy.
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Figure 4.6: Convergence behaviour of the truncated ANOVA expansion of a 4D Gaussian
test function for four different numerical integration formulas.

In the following pages we go to higher dimensions and consider the 6D Product
Peak function and the 6D Gaussian function having the coefficients

c = (0.122, 0.3627, 0.908, 0.5756, 0.5349, 0.7462),

ω = (0.989, 0.567, 0.9898, 0.3223, 0.8135, 0.5157).

The convergence behaviour of the ANOVA expansion according to its truncation
order is illustrated in Figures 4.7 and 4.8 for the Product Peak function and the
Gaussian function, respectively. Again, from Figures 4.7a, 4.7b, 4.8a and 4.8b it is
evident that Stroud-2 and Stroud-3 are not enough to obtain a correct convergence
behaviour. On the contrary, we can observe from Figures 4.7c, 4.7d, 4.8c and 4.8d
that the contributions to the error become monotonically smaller and smaller as
the truncation order of the ANOVA expansion increases. Moreover, it is encourag-
ing that the convergence behaviour appears to be insensitive to the choice of test
function.
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Tables 4.2 and 4.3 confirm that Stroud-2 is not accurate at all, while Stroud-3
appears to be misleading with regard to the TSIs of x1 and x2, even though yielding
reasonable results for the other TSI values. We must use Gauss-Legendre quadrature
if we want to be sure to obtain reliable results for the TSIs.

On the basis of such considerations, in what follows we will only make use of the
product rules with Gauss-Legendre integration formulas.
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Figure 4.7: Convergence behaviour of the truncated ANOVA expansion of a 6D Product
Peak test function for four different numerical integration formulas.

x1 x2 x3 x4 x5 x6

Stroud-2 0.3135 0.3143 0.5925 0.2266 0.2229 0.2267
Stroud-3 0.0243 0.0500 0.6182 0.0765 0.1720 0.2187

(G2)6 0.0011 0.0236 0.6426 0.0434 0.1586 0.2201
(G3)6 0.0012 0.0270 0.6582 0.0573 0.1546 0.1958
(G4)6 0.0013 0.0281 0.6495 0.0599 0.1573 0.2031

Table 4.2: TSIs for a 6D Product Peak function, computed according to different integra-
tion formulas.
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Figure 4.8: Convergence behaviour of the truncated ANOVA expansion of a 6D Gaussian
test function for four different numerical integration formulas.

x1 x2 x3 x4 x5 x6

Stroud-2 0.3770 0.3567 0.6322 0.2286 0.2497 0.2517
Stroud-3 0.0527 0.0734 0.7112 0.0932 0.1783 0.2166

(G2)6 0.0006 0.0159 0.7610 0.0321 0.1395 0.2010
(G3)6 0.0008 0.0197 0.7494 0.0476 0.1461 0.2013
(G4)6 0.0008 0.0208 0.7450 0.0505 0.1499 0.2064

Table 4.3: TSIs for a 6D Gaussian test function, computed according to different integration
formulas.
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4.6 Flowcharts of the ANOVA expansion code
Figure 4.9 shows a flowchart for the ComputeTSI function. According to the user’s
choice, either the function GenerateStroudPoints or GenerateGaussLegendreNodes
is used to generate the cubature nodes needed to calculate the TSIs. Then inside the
loop the ComputeANOVA function is called for each cubature node to calculate the VT
values. After this, the sensitivity measures ST and finally the TSIs are computed.

ComputeTSI

GenerateStroudPoints or
GenerateGaussLegendreNodes

for i=1:totalNodes

ComputeANOVA

Compute V ’s

Compute S’s

Compute TSIs

End

Figure 4.9: Flowchart of the ComputeTSI function.
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Figure 4.10 illustrates the content of the ComputeANOVA function. First, the zero-
th order term u0 of the expansion is computed using the Compute_u0 function. Then
the outer loop cycles over the dimensions of the problem, from t = 1 to t = p − 1.
The inner loop cycles over the terms of order t, which are

(
p
t

)
-many, and at each

iteration calls the function ComputeIntegral. Finally we subtract from the higher
order terms of the ANOVA expansion the contributions coming from the lower order
terms.

ComputeANOVA

Compute_u0

for t=1:p-1

for k=1:
(
p
t

)
Compute t-th order terms
with ComputeIntegral

Subtract lower-order terms
from t-th order terms

End

Figure 4.10: Flowchart of the ComputeANOVA function.
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Figure 4.11 reports the flowchart of the Compute_u0 function. To generate the cu-
bature nodes needed to calculate u0 one can choose either the GenerateStroudPoints
or the GenerateGaussLegendreNodes function. Inside the loop, for each cubature
node we call TestFunction if we are using a test function or ErrorFunctional if
we are applying the ANOVA expansion machinery to the BGK+PML model. The
calculation of the integral is finalized by using an affine mapping and the zero-th
order term of the ANOVA expansion is returned.

We point out that the ComputeIntegral function develops similarly to the
Compute_u0 function. Additional documentation is contained in the code.

Compute_u0

GenerateStroudPoints or
GenerateGaussLegendreNodes

for i=1:totalNodes

TestFunction(node(i)) or
ErrorFunctional(node(i))

Finalize calculation of the integral

End

Figure 4.11: Flowchart of the Compute_u0 function.

58



4. SENSITIVITY ANALYSIS

4.7 ANOVA expansion applied to the BGK+PML
model

Finally we have reached the heart of this study, since we now have all the ingredients
to apply the ANOVA expansion to the functional of our solution to the BGK+PML
model. We have already delineated our functional at the beginning of this chapter,
but let us recall it again here. We choose the functional g1 to be the maximum
over the simulation time of the L2-norm of the error in the density a0 between the
BGK+PML and the plain BGK, calculated along a line close to the PML, normalized
with respect to the L2-norm of the initial condition of the density a0 on that same
line for the plain BGK. Synthetically:

g1 =

maxt∈[0,T ]

{[∫ Ly
0

(
aBGK+PML

0 (x∗, y, t)− aBGK
0 (x∗, y, t)

)2
dy
]1/2
}

[∫ Ly
0

(aBGK
0 (x∗, y, t = 0))

2
dy
]1/2

,

We consider g1 to be a function of α0, α1 and L, namely g1(α0, α1, L). We recall
that we must freeze λ0 and λ1 to zero to address the stability issues discussed in
Sections 3.3.1 and 4.2.1.

The TSIs are computed for β = 2, 3, 4, being β the exponent that appears in
the expression of the damping function σ1. We allow both α0 and α1 to vary in
the interval [0, 5], while the PML thickness L varies in the interval [0.25, 0.80]. The
results, obtained using increasingly more accurate cubature formulas, namely (G2)3,
(G3)3 and (G4)3, are given in Table 4.4 for β = 2, 3, 4.

PML exponent Cubature type α0 α1 L

β = 2
(G2)3 0.2274 0.2521 0.9435
(G3)3 0.2251 0.2565 0.9478
(G4)3 0.2221 0.2494 0.9607

β = 3
(G2)3 0.2212 0.2511 0.9586
(G3)3 0.2104 0.2590 0.9716
(G4)3 0.2112 0.2491 0.9705

β = 4
(G2)3 0.2201 0.2352 0.9640
(G3)3 0.2114 0.2488 0.9814
(G4)3 0.2051 0.2427 0.9865

Table 4.4: TSIs for the parameters α0, α1 and L, using functional g1(α0, α1, L).

It is evident from Table 4.4 that the parameter with the largest TSI is the PML
thickness L, while α0 and α1 basically have the same sensitivity measure. Moreover,
we observe that the TSIs are virtually independent of the PML exponent β.

We can also take into account the PML exponent as a parameter of the functional,
i.e. we consider g1(α0, α1, β, L). We compute the TSIs assuming the following
intervals of variation for the parameters

α0 ∈ [0, 3.5] , α1 ∈ [0, 3.5] , β ∈ [0, 4] , L ∈ [0.25, 0.80] .
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The results are reported in Table 4.5, where we have highlighted the values obtained
with the most accurate cubature formula we used.

Cubature type α0 α1 β L

(G2)4 0.1638 0.2474 0.2775 0.9312
(G3)4 0.1635 0.1916 0.2879 0.9385

Table 4.5: TSIs for the parameters α0, α1, β and L, using functional g1(α0, α1, β, L).

We observe, as we might have expected, that the parameters α0 and α1 show
only a minor impact on the functional g1. The parameters β and L appearing in the
definition of the damping function σ1 clearly dominate the outcome of the functional.
In particular, the PML thickness L has the largest influence on g1.

At this point, it might be interesting to investigate what happens if we freeze the
least important parameters α0 = α1 = 1 and we do the ANOVA expansion of the
functional g1(β, L). The TSI values for this case are reported in Table 4.6, where
again we have highlighted the most accurate calculations.

Cubature type β L

(G2)2 0.0465 0.9535
(G3)2 0.0557 0.9443
(G4)2 0.0660 0.9340

Table 4.6: TSIs for the parameters β and L, using functional g1(β, L).

The TSI values in Table 4.6 strongly confirm that the PML thickness L is the
parameter having the largest influence on the PML behaviour.

4.7.1 Other functionals

In this section we also consider other forms of the error functional to investigate
whether this may have an influence on the TSI values.

We define the error functional g2 as

g2 =

∫ T
0

{[∫ Ly
0

(
aBGK+PML

0 (x∗, y, t)− aBGK
0 (x∗, y, t)

)2
dy
]1/2
}

dt[∫ Ly
0

(aBGK
0 (x∗, y, t = 0))

2
dy
]1/2

,

Here we are still looking at the error in the density a0 on a vertical line close to the
PML, but instead of taking the maximum of the L2-norm we compute its integral
over time. The functional g2 is basically the area under the curve in Figure 4.2.

Table 4.7 reports the values obtained for the TSIs when adopting the functional
g2(α0, α1, β, L).

60



4. SENSITIVITY ANALYSIS

Cubature type α0 α1 β L

(G2)4 0.1623 0.1875 0.3061 0.9343
(G3)4 0.1596 0.1659 0.3740 0.9298

Table 4.7: TSIs for the parameters α0, α1, β and L, using functional g2(α0, α1, β, L).

It is encouraging to observe that these values are very similar to those in Table
4.5, meaning that the sensitivity of the model to the various parameters is virtually
independent of the choice of the functional. The only noticeable effect produced by
switching from functional g1 to functional g2 is that the TSI of α1 decreases a bit,
while the TSI of β increases.

Freezing α0 = α1 = 1 and redoing the ANOVA analysis using the functional
g2(β, L), we obtain the results in Table 4.8.

Cubature type β L

(G2)2 0.0543 0.9457
(G3)2 0.0803 0.9197
(G4)2 0.0924 0.9076

Table 4.8: TSIs for the parameters β and L, using functional g2(β, L).

Also here we can note the similarities with the TSI values in Table 4.6, and
conclude that the TSIs do not significantly depend on the choice of the functional.

Another option for the error functional is to calculate the L2-norm of the error
in a0 not only on a vertical line close to the PML, but on the entire domain Lx×Ly,
and then integrate over time:

g3 =

∫ T
0

{[∫ Lx
0

∫ Ly
0

(
aBGK+PML

0 (x, y, t)− aBGK
0 (x, y, t)

)2
dx dy

]1/2
}

dt[∫ Lx
0

∫ Ly
0

(aBGK
0 (x, y, t = 0))

2
dx dy

]1/2
,

This choice of the functional yields the TSI values reported in the following table.

Cubature type α0 α1 β L

(G2)4 0.1649 0.1773 0.3072 0.9374
(G3)4 0.1605 0.1627 0.3920 0.9280

Table 4.9: TSIs for the parameters α0, α1, β and L, using functional g3(α0, α1, β, L).

The results in Table 4.9 again confirm that the TSIs are basically independent
of the choice of the error functional.

The results in Table 4.10, obtained for the functional g3(β, L), are also in agree-
ment with our previous observations.
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Cubature type β L

(G2)2 0.0533 0.9467
(G3)2 0.0845 0.9155
(G4)2 0.1053 0.8947

Table 4.10: TSIs for the parameters β and L, using functional g3(β, L).

Summarizing, we have answered the question “What are the most important
parameters in the BGK+PML model?”. For stability issues, we know that we have
to freeze λ0 and λ1, while the results of the sensitivity analysis show that the most
significant parameters are the PML exponent β and the PML thickness L.

In the light of these results, it is now tempting to ask the question “How can
the most significant parameters be chosen in an optimal way?”, where in an optimal
way can be restated as so as to minimize the functional g.

4.8 Choice of the optimal parameter values
In order to choose the optimal parameter values, we resort to convex optimization
techniques. In general, optimization techniques are employed to find a set of design
variables, α = (α1, α2, · · · , αp) ∈ Rp, that can in some way be defined as optimal.
In a simple case this might be the minimization or maximization of some objective
function g(α). In a more advanced formulation the objective function might be
subject to constraints in the form of equality constraints, inequality constraints,
and/or parameter bounds.

We can state the general minimization problem as

min
α
g(α).

If we want to find an efficient and accurate solution to this problem, we have to take
into account the nature of the objective function and the constraints. If the objective
function and the constraints are both linear functions, the problem is known as a
linear programming problem. Quadratic programming deals with the minimization
or maximization of a quadratic objective function that is linearly constrained. For
both linear and quadratic programming problems, reliable solution procedures are
readily available. If the objective function and/or the constraints are nonlinear
functions of the design variables, then one has to solve a nonlinear programming
problem. A nonlinear programming problem is in general more difficult to solve and
needs an iterative procedure to choose a direction of search at each iteration. This is
usually achieved by the solution of a linear programming, a quadratic programming
or an unconstrained subproblem.

In our case we could introduce as a constraint a function representing the com-
putational cost. Yet we already know that the computational cost depends on the
mesh-size ∆x and on the PML thickness L. Since we are not changing the mesh-size
∆x, we know that if L increases then the computational cost will also increase. So
we can perform an unconstrained minimization of g1(α0, α1, β, L) on the domain
(α0, α1, β, L) ∈ [0, 3.5]× [0, 3.5]× [0, 4]× [0.25, 0.80].
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Table 4.11 reports four set of parameter values that minimize the functional g1.
These optimal parameter values have been found through a minimization procedure
starting from four different initial guesses.

α0 α1 β L

2.7561 2.7361 3.3077 0.6717
2.5493 2.0772 3.8463 0.5505
0.4991 0.4749 3.8877 0.4222
0.2551 0.0609 3.9325 0.4133

Table 4.11: Four sets of optimal values for the parameters α0, α1, β and L, obtained by
minimizing the functional g1(α0, α1, β, L).

It appears from Table 4.11 that there are many combinations of parameter values
that minimize the functional g1. The parameters α0 and α1 can basically take any
value since they show no significant impact on the outcome of the minimization of
the functional g1. This is in agreement with the fact that their TSI values are the
lowest ones, as we have seen in Section 4.7. The other two parameters, β and L,
seem to take more definite values. In particular, it seems that when β increases, L
decreases, and vice-versa.

To further investigate this aspect, we plot the surface of g1(β, L) on the domain
(β, L) ∈ [0, 4]× [0.10, 1.00].
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Figure 4.12: Plot of g1(β, L) for (β, L) ∈ [0, 4]× [0.10, 1.00].

We can observe from Figure 4.12 that the error g1 starts to be acceptable when
β ' 1 and L ' 0.20. It seems that there is a region, roughly for L ' 0.40 and
β ' 1.5, in which the error g1 is in the order of 10−7.
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Figure 4.13: Contour plot of g1(β, L) for (β, L) ∈ [0, 4]× [0.10, 1.00].

To make things clearer we report in Figure 4.13 a contour plot of g1(β, L) for
(β, L) ∈ [0, 4] × [0.10, 1.00]. It is evident from this plot that there is a region
(corresponding to the dark-blue color) in which the error g1 is practically zero. If we
look at the boundary of this region, we note that when β increases, L can decrease
and still g1 remains in the order of 10−7. This is in agreement with the observations
we did about the results in Table 4.11.

4.8.1 g as function of L only

We have seen in Section 4.7 that the PML thickness L is the parameter having
the highest sensitivity measure. It is tempting to discard all the other parameters
and look for a simple relationship between the error and the PML thickness that
can provide us with additional insights into the PML behaviour. We consider all
the error functionals previously defined, namely g1, g2 and g3. We run simulations
with the PML thickness L varying from 0.20 to 1.00, keeping β fixed to 4, and
we monitor the error functionals. The resulting plots for g1(L), g2(L) and g3(L)
are shown in Figures 4.14a, 4.14b and 4.14c, respectively. All the plots show that
as L increases, one gets better and better accuracy. In particular, at L ≈ 0.42
there has already been a nice drop in the error functionals g1 and g2 (Figures 4.14a
and 4.14b, respectively). The functional g3, instead, shows a smoother behaviour.
If one goes further than L ≈ 0.42, then of course the accuracy improves but the
computational cost becomes dominant. After some point, say L ≈ 0.80, it makes
no sense, both from an accuracy and a computational cost point of view, to further
increase L, because the very small improvements in accuracy do not justify the
higher computational cost.
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Figure 4.14: The error functionals g1(L), g2(L) and g3(L) versus the PML thickness L.
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4.8.2 Influence of the initial condition

The fact that the error functional g1(L) gets very small after L ≈ 0.42 is probably
due to the particular problem we are solving. So far we never changed the initial
conditions of simulation setting, but we can expect the optimal PML thickness L to
be related to the average wavelength of the peak in the initial density distribution.
The idea here is to modify the initial conditions, and in particular vary the shape
of that peak, to gain insights into its possible influence on the PML behaviour.

We recall the expression for the initial density distribution from Section 2.7

a0(x, y, t = 0) = 2 (pin − pout) exp
[
−ε
√

(x− x0)2 + (y − y0)2
]

+ 1.00,

where
x0 = Lx/2, y0 = Ly/2.

We can think of ε as the sharpness of the peak in the initial density distribution.
In all the simulations that we have carried out so far we always used ε = 10.
Now we assume also other values for ε, in particular we consider the set of values
ε ∈ {10, 20, 30, 40} and observe how ε may affect the functional g1(L).

The simulations conducted with this set of ε values were used to produce the
plots reported in Figure 4.15. It is evident from Figure 4.15 that the sharpness of
the peak in the initial density distribution impacts the shape of the error functional.
From Figure 4.15a we can observe that at L ≈ 0.42 the error is equal to g1 = 2×10−6.
If we turn our attention to the other cases, we note that this same value of g1 is
achieved

• when L ≈ 0.20 in the case ε = 20;

• when L ≈ 0.18 in the case ε = 30;

• when L ≈ 0.15 in the case ε = 40.

We can conclude that when the peak in the initial density distribution is sharper,
the PML thickness L required to attain the same level of accuracy is smaller.
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Figure 4.15: Behaviour of the error functional g1(L) according to different initial conditions.
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Conclusions

In this work we studied stability and optimization of an absorbing PML layer for
the BGK approximation to the Boltzmann equation. We showed that for low Mach
numbers and weakly compressible flows one can recover the Navier-Stokes equations
from the BGK model.

We implemented a numerical scheme using fourth order accurate finite differences
for the spatial discretization and a fourth order Runge-Kutta method in time. We
tested the numerical scheme for a simple Couette-Poiseuille flow, for which an exact
solution to the Navier-Stokes equations is available, and we verified that the BGK
model is maintaining that solution.

We reviewed the theory behind the PML technique and presented a PML for
the BGK model according to previous authors. We implemented this model and we
showed that it is qualitatively capable of reproducing the results obtained with the
plain BGK.

We investigated the role and the importance of the parameters appearing in
the BGK+PML model by carrying out a stability analysis to establish reasonable
bounds on the parameters. We studied the stability of this model by means of two
analytical tools, both involving the symbol of a differential operator. We used the
symbol to investigate the parameter values that guarantee the energy decay through
time. To study the sign of the eigenvalues of the symbol we exploited a technique
based on continued fraction expansion of the characteristic polynomial. We found
that to ensure stability one has to freeze λ0 and λ1 to zero. This was also confirmed
by extensive numerical simulations. The above analyses also yielded some bounds
on the other parameters appearing in the BGK+PML model.

We introduced the theory of the ANOVA expansion of multivariate functions
as a tool to study differential problems with a high-dimensional parameter space.
We implemented the ANOVA expansion machinery and tested the accuracy and
efficiency of the code by applying it to some classical test functions.

We defined an error functional of the solution to the BGK+PML model and
applied the ANOVA expansion to this functional to calculate the Total Sensitivity
Indices (TSIs) of the parameters. The bounds established through the stability anal-
ysis were used to choose carefully the parameter values for the simulations required
to calculate the TSIs.

The sensitivity analysis allowed us to focus our attention on the most impor-
tant parameters. The results showed that the most significant parameters in the
BGK+PML model are the PML exponent β and the PML thickness L. We demon-
strated that the TSIs are basically independent of the choice of the functional.

We used minimization techniques to choose the parameter values in an optimal
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way, so as to minimize the error functional. We found that there is a region in which
the error functional is in the order of 10−7. Looking at the boundary of that region,
we also observed that when β increases, L can decrease and still the error functional
remains zero.

We showed that the form of the initial density distribution affects the response
of the PML. In particular, we found that the magnitude of the error functional, and
therefore the optimal PML thickness L, depends on the sharpness of the peak in the
initial density distribution. We concluded that when the peak in the initial density
distribution is sharper, the PML thickness L to attain the same level of accuracy
is smaller. We note that we only changed the sharpness of the peak in the initial
density distribution, but not its mathematical expression. It is reasonable to expect
that by assuming another form of the initial density distribution, e.g. using a time-
dependent source, one may obtain different results. In general, we emphasize that
all the results obtained by applying the ANOVA analysis to the BGK+PML model
depend on the problem configuration. We expect that by changing the problem
settings, notably the initial conditions and/or the boundary conditions, one may
obtain different results. These aspects deserve to be further investigated.

We finally recall that nowadays there is a well established theory for the devel-
opment and the analysis of PMLs for linear problems only. Since the Navier-Stokes
equations (NSE) have a nonlinear nature, one cannot directly apply that theory to
develop a PML for them. Yet for low Mach numbers and weakly compressible flows
one could couple the NSE and the BGK model, by solving the NSE in the physical
domain and the BGK model in the PML domain. The coupling of the NSE and the
BGK equations is an open research direction which is left for future investigation.
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Appendix A

Symmetrizers and well-posedness

In this appendix we will discuss how a general system of m first-order nonlinear
PDEs can be symmetrized through left-multiplication with the Hessian matrix of
an additional conserved variable. We will work out an additional conservation law
for the BGK model and show that the BGK model is well-posed.

A.1 Additional conservation law
Consider a system of m first-order nonlinear conservation equations for m unknowns
in the matrix form

∂u

∂t
+

d∑
k=1

∂fk

∂xk
= 0, (A.1)

where u is the vector of conserved variables, fk are the flux vectors, which are
functions of u, and d is the number of space dimensions. The system (A.1) can be
rewritten as

∂u

∂t
+

d∑
k=1

∇uf
k ∂u

∂xk
= 0, (A.2)

where ∇uf
k denotes the gradient of the flux vector fk with respect to the conserved

variables u, also known as Jacobian matrix of fk.
We consider the additional scalar conservation equation

∂U

∂t
+

d∑
k=1

∂F k

∂xk
= 0,

usually called balance of entropy. This name is due to the fact that usually the
additional conserved variable coincides with the specific energy of the system, or,
more often, with the entropy density.

The additional conservation equation and the new conserved variable U play a
key role in the following remarkable result [9].

Theorem A.1 (Friedrichs and Lax). If a system of m conservation laws implies
an additional conservation law such that the new conserved quantity U is a
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convex function of the original quantities u, then it can be symmetrized by left-
multiplication with the Hessian matrix of U , and the initial value problem (or
Cauchy Problem) is well-posed.

Boillat [4] and later Larecki [20] showed that the converse of this result is also
true.

We observe that this theorem can be interpreted as an equivalence result between
the existence of the entropy balance law and the symmetrizability of the system by
Hessian matrices. In other words, the symmetrizability condition for (A.1) corre-
sponds to the condition that the system implies the balance of entropy.

Moreover, if the system (A.2) is already symmetric, namely if

∇uf
k =

(
∇uf

k
)T
, k = 1, . . . , d,

then we can derive from it the new conservation law

∂U

∂t
+

d∑
k=1

∂F k

∂xk
= 0,

with

U =
1

2

m∑
i=1

(ui)
2 , F k = u · fk − gk, k = 1, . . . , d,

where gk satisfies

∂gk

∂ui
= fki , i = 1, . . . ,m, k = 1, . . . , d.

A.1.1 Additional conservation law of the BGK model

Now we turn our attention to the homogeneous form of the BGK model, namely

∂a

∂t
+ A1

∂a

∂x1

+ A2
∂a

∂x2

= 0. (A.3)

It should be clear that in our BGK model the matrices A1 and A2 are the Jacobian
of the fluxes. Noting that (A.3) is indeed symmetric since A1 and A2 are both
symmetric, one is tempted to apply Theorem A.1 to prove the well-posedness of the
Cauchy problem for the BGK model. This will provide us an additional conserved
variable that can be regarded as an entropy, and it will show how this symmetrization
technique would work in the more general case of a non-symmetric system.

We first write the additional conserved variable as

U(a) =
1

2

5∑
i=0

(ai)
2 =

1

2

(
a2

0 + a2
1 + a2

2 + a2
3 + a2

4 + a2
5

)
,

which is clearly convex. By Theorem A.1, we can already conclude that the Cauchy
problem for (A.3) is well-posed.
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Now, just for the sake of curiosity, we work out the additional conservation law.
We calculate the fluxes for the BGK model, which turn out to be

f 1 =



a1

a0 +
√

2 a4

a3

a2√
2 a1

0

 , f 2 =



a2

a3

a0 +
√

2 a5

a1

0√
2 a2

 ,

as can be easily checked by computing the Jacobian matrices A1 = ∇af
1 and

A2 = ∇af
2. Here we simply set to zero all the integration constants.

To derive g1, we exploit the equalities

∂g1

∂ai
= f 1

i , i = 0, . . . , 5,

which imply
g1 =

(
a0 +

√
2 a4

)
a1 + a2 a3.

Following the same procedure, one obtains for g2

g2 =
(
a0 +

√
2 a5

)
a2 + a1 a3.

With g1 and g2 we can calculate the fluxes for the additional conserved variable

F 1 = a · f 1 − g1 = a0 a1 + a2 a3 +
√

2 a1 a4,

F 2 = a · f 2 − g2 = a0 a2 + a1 a3 +
√

2 a3 a5.

Finally, the additional conservation law is

∂U

∂t
+
∂F 1

∂x2

+
∂F 2

∂x2

= 0,

with U , F 1 and F 2 having the expressions we just worked out.

A.2 Symmetrization
In the general case, the matrix H that makes the system (A.1) symmetric is given
by the Hessian of U(a). The BGK model (A.3) is already symmetric, so it must be
the case that no symmetrizer is needed. Indeed, if we compute the Hessian of U(a),
we recover the identity matrix

H = HessU(a) = I6×6.

In the general case in which the original system (A.1) is not symmetric, and the
number of dimensions d is equal to 2, one proceeds further by defining the matrix
A(n) as

A(n) = n1HA1 + n2HA2,
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where n is a 2D unit vector whose components are n1, n2, namely

n = (n1, n2) , n2
1 + n2

2 = 1.

One can see n as the direction of wave propagation. We recall that in two dimensions
a wave has infinitely-many directions of propagation1. One can then perform the
spectral decomposition of A(n) as

A(n) = TΛT−1,

where T ≡ T (n) is a matrix composed of the eigenvectors of A(n) and Λ ≡ Λ(n) is
the diagonal matrix constructed from the eigenvalues of A(n).

The characteristic variables are defined as

z(n) = T−1u,

where u contains the original conserved variables and T−1 is the inverse of the
transformation matrix T .

In the case of the BGK model, since H = I, one defines A(n) as

A(n) = n1A1 + n2A2,

which coincides, as the reader can verify, with the matrix given in equation (1.7).
Basically by following this procedure we go back to the analysis that we have carried
out in Section 1.3 according to [7]. The eigenvalues of A(n) are

0, 0, −
√
n2

1 + n2
2,

√
n2

1 + n2
2, −

√
3
√
n2

1 + n2
2,
√

3
√
n2

1 + n2
2.

as in (1.8). We further observe that these eigenvalues are independent of n since by
definition we chose n2

1 + n2
2 = 1. In other words, the eigenvalues of A(n) simply are

0, 0, −1, 1, −
√

3,
√

3,

yet we emphasize that the characteristic variables z depend on the direction n.

1We discussed these aspects in Section 1.6.
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Appendix B

Notes on Hagstrom’s paper, 2003

When dealing with numerical simulations of wave-dominated problems it is not
possible of course to use an infinitely large domain to let the waves propagate freely,
but it is necessary to truncate the computational boundary at some reasonable
limits. In such cases, the introduction of absorbing boundary conditions allows to
reduce the computational effort. During the last two decades, there has been a
revival in absorbing layer techniques, mainly thanks to the introduction of perfectly
matched layers by Bérenger [3]. As we have also mentioned in the main text, an
improved approach to developing PMLs has later been proposed by Hagstrom [17].

The purpose of this appendix is to explain how to develop and analyse perfectly
matched layers for general systems of constant coefficient hyperbolic PDEs. This
presentation will mainly be based on the paper by Hagstrom [17].

We consider a two-dimensional problem, with an absorbing layer in the x-direction,
having thickness L, as shown in Figure B.1.

x

y

PMLPhysical domain

L0

Figure B.1: Problem setting considered by Hagstrom.
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A first order, constant coefficient hyperbolic system governs the solution outside
the layer:

∂u

∂t
+ A

∂u

∂x
+B

∂u

∂y
+ Cu = 0. (B.1)

It is intended that u ≡ u(x, y, t). If we perform the Laplace transform of (B.1) in
the time variable t we get:

sû+ A
∂

∂x
û+B

∂

∂y
û+ Cû = 0, (B.2)

where s ∈ C is the (complex) Laplace variable and û ≡ û(x, y, s) denotes the Laplace
transform of the sought solution u. We have exploited the so-called derivative
property of the Laplace transform, namely:

L[f ′(t)](s) = sF (s)− f(0),

with F (s) = L[f(t)](s).
Now we make the assumption that the Laplace transform of the solution can be

written as a separable variable solution:

û = eλxφ, (B.3)

with φ being functions of s and y, but not of x, namely φ ≡ φ(s, y). In general, the
coefficient λ can also be in C.

If we substitute (B.3) into (B.2) we get:

seλxIφ+ A
∂

∂x

(
eλxφ

)
+B

∂

∂y

(
eλxφ

)
+ Ceλxφ = 0,

seλxIφ+ Aλeλxφ+B eλx
∂

∂y
φ+ Ceλxφ = 0,

(
sI + λA+B

∂

∂y
+ C

)
φ = 0. (B.4)

This is the modal equation outside the layer. The φ are the eigenfunctions, or
eigenmodes. It is advisable to rewrite (B.4) as:(

sI +B
∂

∂y
+ C

)
φ = −λAφ, (B.5)

so that we can readily recognize this as a generalized eigenvalue problem with eigen-
functions φ.

The λ can be easily worked out as:

λ =
− (sI + ik2B + C)φ

Aφ
.
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We take the real part of λ

Re(λ) = −(Re(s)I + C)φ

Aφ

and left-multiply by the complex conjugate of φ, obtaining

Re(λ) = −Re(s) + |C|2
|A|2

, (B.6)

where |C|2 = φ∗Cφ, |A|2 = φ∗Aφ and we have assumed that φ is normalized, i.e.
φ∗φ = 1.

Now let us look at the numerator of (B.6). We note that if Re(s) is sufficiently
large, i.e. if Re(s) > |C|2, then there are no purely imaginary eigenvalues λ. In
this case, we may assume that the eigenvalues fall into two sets, one containing
eigenvalues with negative real part and the other containing eigenvalues with positive
real part.

Instead, if C = 0, then in the limit Re(s) → 0 one also has Re(λ) → 0, but we
really want to avoid purely imaginary eigenvalues. We have to come up with a layer
model such that Re(λ) does not tend to zero when Re(s)→ 0 and so that there are
no reflections at the interface between the layer and the physical domain. To avoid
reflections at the interface is necessary to build the governing equations of the layer
in such a way that, after Laplace-transforming them, their eigenfunctions are the
same as outside the layer.

Hagstrom proposed the following governing equations for the PML:

∂u

∂t
+ A

(
∂u

∂x
+ v +w

)
+B

∂u

∂y
+ Cu = 0, (B.7)

Rw + σw + σ

(
∂u

∂x
+ v

)
= 0, (B.8)

Mv = σNu, (B.9)

where w,v are auxiliary variables, M,N are numbers, σ ≥ 0 is the absorption
parameter and R is a scalar differential operator:

R :=
∂

∂t
+ β

∂

∂y
+ α.

Note that the only difference between (B.1) and (B.7) are the auxiliary variables
trailing the term ∂u/∂x.

Hagstrom suggests that the modal solution inside the layer is given by the Ansatz:

û = eλx+(λR̂−1−M̂−1N̂)
∫ x
0 σ(z) dzφ, (B.10)

and then he claims that “when we substitute (B.10) into the new system we want the
eigenvalue problem for φ in (B.4) to be the result”. To make this clearer: when we
substitute the Ansatz (B.10) into the Laplace transform of the PML system (B.7),
(B.8), (B.9) and set σ = 0 we should get the eigenvalue problem (B.4) for φ outside
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the layer. This is exactly what we are looking for: we want the eigenfunctions for
the eigenvalue problem inside the layer to be the same that satisfy the eigenvalue
problem outside the layer.

In the following, we are going to check that this is actually the case, since
Hagstrom states it, but leaves the calculations to the reader. The first thing to
do is to make the auxiliary variables disappear from our equations. From (B.9) we
work out v:

v = σM−1Nu, (B.11)

then w from (B.8):

(R + σ)w + σ

(
∂u

∂x
+ v

)
= 0,

(R + σ)w + σ

(
∂u

∂x
+ σM−1Nu

)
= 0,

w = −σ (R + σ)−1

(
∂

∂x
+ σM−1N

)
u. (B.12)

Now we insert (B.11) and (B.12) into (B.7):

∂u

∂t
+ A

(
∂u

∂x
+ σM−1Nu− σ (R + σ)−1

(
∂

∂x
+ σM−1N

)
u

)
+B

∂u

∂y
+ Cu = 0,

∂u

∂t
+A

((
∂

∂x
+ σM−1N

)
u− σ (R + σ)−1

(
∂

∂x
+ σM−1N

)
u

)
+B

∂u

∂y
+Cu = 0,

∂u

∂t
+ A

(
1− σ (R + σ)−1)( ∂

∂x
+ σM−1N

)
u+B

∂u

∂y
+ Cu = 0. (B.13)

We point out that this is a single vector equation for the PML model obtained from
the three coupled equations (B.7), (B.8) and (B.9). After Laplace-transforming in
the variable t, the last equation turns into:(

sI + A
(

1− σ(R̂ + σ)−1
)( ∂

∂x
+ σM̂−1N̂

)
+B

∂

∂y
+ C

)
û = 0.

We now insert the Ansatz for the modal solution inside the layer into the previous
equation. For simplicity, we can assume that σ is constant. After some simple
calculations, we get:

(
sI + λA

(
1 + R̂−1σ

)(
1− σ(R̂ + σ)−1

)
+B

∂

∂y
+ C

)
φ = 0. (B.14)

This is the modal equation inside the layer. It is now a simple matter to see that
outside the layer, namely when σ = 0, the last equation reduces to (B.4). In other
words, the eigenfunctions φ remain the same, no matter if we are looking at the
solution inside or outside the absorbing layer. This is exactly what we wanted, and
it concludes the proof of the claim.
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Now we want to analyse the decaying of the solution in time. We will take
advantage of the fact that, when dealing with a constant coefficient case, we can
also perform a Fourier transform in the spatial variables. Usually this is done in
the variable(s) transversal to the direction of development of the layer. The reason
for taking the Fourier Transform is that we get a nice polynomial in the Fourier
variable. In other words, the integral transformations allow to recast a differential
problem into an algebraic problem. If the coefficients are not constant, then this
technique is no more useful.

Outside the layer we have

∂u

∂t
+ A

∂u

∂x
+B

∂u

∂y
+ Cu = 0,

Fourier-transforming in all the spatial variables

∂ũ

∂t
+ ik1Aũ+ ik2Bũ+ Cũ = 0,

we get the system of ordinary differential equations:

∂ũ

∂t
= − (ik1A+ ik2B + C) ũ,

whose solution is given by:

ũ = c exp [− (ik1A+ ik2B + C) t ] . (B.15)

Assuming that A and B contain only real coefficients, we have that the terms ik1A
and ik2B are pure imaginary, so we do not care about them, since the complex expo-
nential is only a linear combination of sine and cosine waves, and thus shows the oscil-
latory wave-like behaviour. What we really wish is that Re [− (ik1A+ ik2B + C)] <
0, which means that we have to ensure that Re(C) > 0. In other words, if all the
coefficients in C are strictly positive, then we actually have a decaying wave with
respect to time, a behaviour which agrees with the physics of the problem.

Now consider the single equation (B.13) that governs the solution inside the layer

∂u

∂t
+ A

(
1− σ (R + σ)−1)( ∂

∂x
+ σM−1N

)
u+B

∂u

∂y
+ Cu = 0,

that we have worked out before. If we take the Fourier transform in all the spatial
coordinates:

∂ũ

∂t
+ A

(
1− σ

︷ ︸
(R + σ)−1

)(
ik1 + σM−1N

)
ũ+ ik2Bũ+ Cũ = 0,

∂ũ

∂t
= −

[
A

(
1− σ

︷ ︸
(R + σ)−1

)(
ik1 + σM−1N

)
+ ik2B + C

]
ũ.

The solution of this equation is similar to (B.15). We emphasize though that (R +
σ1)−1 is the inverse of a scalar differential operator, and in general to work out this
kind of inverse is not a trivial task. In general, one has to resort to the theory of
pseudodifferential operators.
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At any rate, since we are mapping the differential operators into the Laplace-
Fourier space, we note that the transform of the inverse of a differential operator is
equal to the reciprocal of the transform of the differential operator. Symbolically, if
we denote by P (∂/∂x) a differential operator, the following result holds:

F
[
P−1(∂/∂x)

]
=

1

F [P (∂/∂x)]
,

where F denotes the Fourier transform and P−1(∂/∂x) is the inverse of the differ-
ential operator P (∂/∂x). It can be showed that this same property holds also for
the Laplace transform.

Specializing it to our case, it should by now be clear that

LF
[
(R + σ1)−1

]
=

1

LF [R + σ1]
,

where LF denotes the Laplace-Fourier transform. Recalling the definition of R, we
get the result:

LF
[
(R + σ1)−1

]
=

1

LF
[
∂

∂t
+ α1

∂

∂x2

+ α0 + σ1

] =
1

s+ iα1k2 + α0 + σ1

.

After all this discussion about integral transforms, the following questions may nat-
urally arise: When do we take the Fourier transform in only one spatial variable,
and when do we take it in both spatial variables? And also, When do we take the
Laplace Transform and when we do not? The answers are as follows:

• When we want to come up with an Ansatz for the modal solution inside the
layer, then we take the Laplace transform in t and the Fourier transform
in the spatial variable which is transversal with respect to the direction of
development of the layer.

• When we want to prove stability through bounds on the energy decay, then
we perform the Fourier transform in all spatial variables (see Section 3.2). In
this case, we can also do the Laplace transform, but it is not necessary and
also makes things a bit more complicated, because in that case we also have
to prove that the solution is well-behaved for any Re(s) > 0.

We point out once more that the Laplace-Fourier transformation machinery al-
lows turn a differential problem into an algebraic one. Notice that this is a general
approach often used when dealing with wave propagation phenomena: we switch
from the wave equation (which is a PDE) to the so-called Helmholtz equation (which
is an ODE).
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Modal analysis in Laplace-Fourier
space

In this appendix we will apply the theory discussed in Appendix B to the case of
the BGK model.

The governing equation of the BGK variables inside the layer is:

∂a

∂t
+ A1

(
∂a

∂x1

+ σ1 (λ0a+ ω)

)
+ A2

(
∂a

∂x2

+ σ2

(
λ̃0a+ θ

))
= S(a). (C.1)

First we want to make the auxiliary variables disappear from this equation. We
therefore turn our attention for a moment to the equations governing the evolution
of the auxiliary variables. The auxiliary variable ω is evolved according to:

∂ω

∂t
+ α1

∂ω

∂x2

+ (α0 + σ1)ω +
∂a

∂x1

+ λ0(α0 + σ1)a− λ1
∂a

∂x2

= 0.

We define the following first order scalar differential operator:

R :=
∂

∂t
+ α1

∂

∂x2

+ α0,

so that the previous equation becomes:

Rω + σ1ω +
∂a

∂x1

+ λ0(α0 + σ1)a− λ1
∂a

∂x2

= 0.

Similarly, the auxiliary variable θ is evolved according to:

∂θ

∂t
+ α̃1

∂θ

∂x1

+ (α̃0 + σ2)θ +
∂a

∂x2

+ λ̃0(α̃0 + σ2)a− λ̃1
∂a

∂x1

= 0.

Also we define a first order scalar differential operator:

M :=
∂

∂t
+ α̃1

∂

∂x1

+ α̃0,

so that:
Mθ + σ2θ +

∂a

∂x2

+ λ̃0(α̃0 + σ2)a− λ̃1
∂a

∂x1

= 0.
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(R + σ1)ω = − ∂a
∂x1

− λ0(α0 + σ1)a+ λ1
∂a

∂x2

,

ω = (R + σ1)−1

(
− ∂a
∂x1

− λ0(α0 + σ1)a+ λ1
∂a

∂x2

)
,

where the −1 denotes the inverse operator. Analogously:

(M + σ2)θ = − ∂a
∂x2

− λ̃0(α̃0 + σ2)a+ λ̃1
∂a

∂x1

,

θ = (M + σ2)−1

(
− ∂a
∂x2

− λ̃0(α̃0 + σ2)a+ λ̃1
∂a

∂x1

)
.

We insert these expressions into (C.1):

∂a

∂t
+A1

(
∂a

∂x1
+ σ1

(
λ0a+ (R+ σ1)

−1

(
− ∂a

∂x1
− λ0(α0 + σ1)a+ λ1

∂a

∂x2

)))
+A2

(
∂a

∂x2
+ σ2

(
λ̃0a+ (M + σ2)

−1

(
− ∂a

∂x2
− λ̃0(α̃0 + σ2)a+ λ̃1

∂a

∂x1

)))
= S(a),

and after going through a little bit of algebra, we get

∂a

∂t
+A1

((
I − σ1(R+ σ1)

−1
)( ∂

∂x1
+ σ1λ0

)
+ σ1(R+ σ1)

−1

(
λ1

∂

∂x2
− λ0α0

))
a

+A2

(
(I − σ2(M + σ2)

−1)

(
∂

∂x2
+ σ2λ̃0

)
+ σ2(M + σ2)

−1

(
λ̃1

∂

∂x1
− λ̃0α̃0

))
a = S(a).

If the layer develops in the x1-direction only, namely if σ2 = 0, then we have

∂a

∂t
+A1

((
I − σ1(R+ σ1)

−1
)( ∂

∂x1
+ σ1λ0

)
+ σ1(R+ σ1)

−1

(
λ1

∂

∂x2
− λ0α0

))
a

+A2
∂a

∂x2
= S(a).

Now if we take the Laplace transform in t and the Fourier transform in x2 (neglecting
the term on the right-hand side) and introduce the symbol of R

r̂ = s+ iα1k2 + α0,

then the last equation becomes

(
sI +A1

((
I − σ1

r̂ + σ1

)(
∂

∂x1
+ σ1λ0

)
+

σ1
r̂ + σ1

(λ1ik2 − λ0α0)

)
+ ik2A2

)
â = 0. (C.2)

Now this expression present a term that looks like the exponent in equation (22)
in Gao et al. [11].
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Routh-Hurwitz stability criterion

In control theory, the Routh-Hurwitz stability criterion is a test to check the stability
of linear time-invariant control systems. In 1876, the English mathematician Edward
Routh proposed a test to determine whether the roots of a characteristic polynomial
of a linear system have negative real parts. A couple of decades later, in 1895,
the German mathematician Adolf Hurwitz proposed to arrange the coefficients of
the polynomial into a square matrix, called the Hurwitz matrix, and proved that
the system is stable if and only if the sequence of determinants of its principal
submatrices are all positive. It turns out that the two procedures are equivalent,
which is why one talks about the Routh-Hurwitz stability criterion. The importance
of this criterion lies in the fact that the roots λ of the characteristic equation of a
linear system represent solutions of the type eλt. Therefore if all of these λ have
negative real part, then the solutions are stable. A polynomial satisfying the Routh-
Hurwitz stability criterion is said to be Hurwitz-stable.

The Routh test can be derived through the use of the Euclidean algorithm and
Sturm sequences. These are exactly the same tools that lie behind Theorem 3.3,
as the reader can verify in the bibliography, for instance by looking at the book of
Marden [22]. In this appendix we show that the Routh-Hurwitz test and Theorem
3.3 develop on the same foundations.

We start off by stating the Routh-Hurwitz theorem.

Theorem D.1 (Routh-Hurwitz). Let f(z) be a polynomial of degree n and

f(iy) = P0 + iP1(y),

for a real y. Let p be the number of roots of the polynomial f(z) with negative
real part and q the number of roots with positive real part. Then, if there are no
roots lying on the imaginary axis, the following result holds

p− q = w(+∞)− w(−∞),

where w(x) is the number of variations of the generalized Sturm chain obtained
from P0(y) and P1(y) by successive Euclidean divisions.

We point out that the fundamental theorem of algebra states that each polyno-
mial of degree n has exactly n roots in the complex plane. If f(z) has no roots on the
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imaginary axis, then we can write n = p+ q. We have that f(z) is a Hurwitz-stable
polynomial if and only if p ≡ n (or, equivalently, if q ≡ 0). Using the Routh-Hurwitz
theorem one can replace the condition on p and q by a condition on the generalized
Sturm chain, which yields a condition on the coefficients of the polynomial.

Now we turn our attention to the aspects behind Theorem 3.3, used by Appelö et
al. [2]. Theorem 3.3 comes from a special case of corollary (38.1b) in Marden [22]. In
fact, Chapter IX in [22] deals with the problem of finding the exact or approximate
number of zeros which lie in a prescribed region such as a half-plane, a sector or
a circular region. The presentation in [22] covers how this problem can arise from
physics and applied mathematics by an example taken from Routh. Marden shows
the example of a system whose sufficient condition for stability is to have all the
roots of its characteristic polynomial lying in the left half-plane (i.e., having negative
signs). To determine the number of zeros of a polynomial in a given half-plane, the
concept of Cauchy index is introduced. Here we limit ourselves to state the Cauchy
Index Theorem as presented in [22], essentially in the same form given by Hurwitz.

Theorem D.2 (Cauchy Index Theorem). Let

f(z) = a0 + a1z + · · ·+ an−1z
n−1 + zn = P0(z) + iP1(z),

where P0(z) and P1(z) are real polynomials with P1(z) 6= 0. As the point z = x
moves on the real axis from −∞ to +∞, let σ be the number of real zeros of
P0(z) at which ρ(x) = P0(x)/P1(x) changes from − to +, and τ the number of
real zeros of P0(z) at which ρ(x) changes from + to −. If f(z) has no real zeros,
p zeros in the upper half-plane and q zeros in the lower half-plane, then

p =
1

2
[n+ (τ − σ)] , q =

1

2
[n− (τ − σ)] .

The Cauchy Index Theorem turns the problem of finding the number of zeros
in the upper and lower half-planes into the problem of calculating the difference
(τ − σ). In the case of real polynomials, this difference has been computed with the
theory of residues by Hurwitz and with the use of Sturm chains by Routh.

Following the approach of Routh, one can construct the Sturm sequence of func-
tions P0(x), P1(x), P2(x), . . . , Pµ(x) by applying to P0(x) and P1 the Euclidean di-
vision algorithm in which the remainder is written with a negative sign. We define
w{Pk(x)} ≡ w{P0(x), P1(x), P2(x), . . . , Pµ(x)} the number of variations of sign in
the sequence P0(x), P1(x), P2(x), . . . , Pµ(x). One can show that

τ − σ = w{Pk(+∞)} − w{Pk(−∞)}

and, with this result in mind, one can restate the Cauchy Index Theorem as follows.

Theorem D.3. Let

f(z) = a0 + a1z + · · ·+ an−1z
n−1 + zn = P0(z) + iP1(z),

86



APPENDIX D. ROUTH-HURWITZ STABILITY CRITERION

where P0(z) and P1(z) are real polynomials with P1(z) 6= 0, be a polynomial
which has no real zeros, p zeros in the upper half-plane and q zeros in the lower
half-plane. Let P0(x), P1(x), P2(x), . . . , Pµ(x) be the Sturm sequence formed by
applying to P0(x)/P1(x) the negative-remainder, Euclidean division algorithm.
Then

p =
1

2
[n+ w{Pk(+∞)} − w{Pk(−∞)}] ,

q =
1

2
[n− w{Pk(+∞)}+ w{Pk(−∞)}] .

We finally have the following result, given as corollary (38,1b) in [22].

Theorem D.4. If for P0(x) and P1(x) of Theorem D.3 there is a continued
fraction expansion

P1(x)

P0(x)
=

1

c1x+ d1 −
1

c2x+ d2 −
1

c3x+ d3 − · · · −
1

cnrx+ dnr

where cj 6= 0 for j = 1, 2, . . . , n, then p is equal to the number of coefficients
cj having negative sign, while q is equal to the number of coefficients cj having
positive sign.

This result is due to Wall in the case of real polynomials and to Frank [8] in the
case of complex polynomials. It is exactly Theorem 3.3 that we used to study the
stability of the BGK+PML model in Section 3.3.
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