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Abstract

Tunnels have recently become a very interesting case of study when special
conditions like fire or blasting are taken into account. An accurate treatment of
these special conditions is not usually familiar to many structural designers and
this work tries to provide a useful tool for the assessment of structural elements
under blasting phenomena (or general vibration), with particular focus on tunnel
structures.

In order to analyse the behaviour of the shell structure of a tunnel, it is useful
to evaluate the material and load conditions through experimental test. The
shock tube test is specifically created to simulate accurately the shock pressure
produced by an explosion. The shock tube test is intended to evaluate the
maximum resistance of circular plates made in different materials and under
several boundary conditions.

In this work, simplified models are proposed for the analysis of circular
plates made in traditional reinforced concrete (R/C) and fibre-reinforced con-
crete (FRC). These materials are commonly used in design of tunnels and many
other structures on which this work can be applied. By means of energetic pro-
cesses it is possible to reduce a bidimensional structure with distributed mass an
elasticity into a generalized single-degree-of-freedom system. This simplification
allows to treat the dynamic issues in an easier way.

This work analyses the maximum resistance of circular plates in two cases:
a simply supported plate and a plate resting on a Winkler-type soil. The aim of
these analyses is the development of pressure-impulse diagrams for several pulse
shapes. Pressure-impulse diagrams are created analogously to bending-axial
force diagrams in columns, and they represent a very useful graphical method for
the preliminary assessment of structural components subjected to blast loadings.
In fact, according to the conditions of a plate sample (amongst them: pressure,
pulse shape, material characteristics), it is possible to know immediately if the
structure will be damaged, just placing a point in the pressure-impulse diagram.

Keywords: blast loadings, structural assessment, SDOF systems, circular
plates, pressure-impulse diagrams, collapse mechanism.
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Sommario

Lo studio delle gallerie in presenza di azioni eccezionali come incendi o esplosioni
è recentemente diventato di grande interesse. Solitamente il progettista non è
familiare ad una trattazione accurata di tali azioni, e questo lavoro cerca di
fornire un utile strumento per l’assessment di strutture sottoposte ad esplosione,
con particolare riguardo alle gallerie.

Per analizzare il comportamento di un concio di galleria, è utile effettuare
dei test sperimentali ipotizzando materiali e condizioni di carico. Lo shock tube
è uno strumento appositamente creato per simulare l’onda d’urto prodotta da
un’esplosione. Con lo shock tube test si cerca di valutare la resistenza massima
di piastre circolari per diversi materiali e diverse condizioni al contorno.

In questo lavoro vengono proposti dei modelli semplificati per l’analisi di
piastre circolari realizzate in calcestruzzo armato o fibrorinforzato. Questi ma-
teriali sono comunemente usati nella progettazione di gallerie e molte altre strut-
ture a cui questo lavoro può essere applicato. Attraverso approcci energetici una
struttura bidimensionale avente massa ed elasticità distribuite può essere ricon-
dotta ad un sistema ad un grado di libertà generalizzato. Questa semplificazione
consente di trattare in maniera più semplice il problema dinamico.

Questo lavoro analizza la resistenza massima di una piastra circolare in due
casi: una piastra semplicemente appoggiata ed una piastra su suolo elastico alla
Winkler. L’obiettivo di queste analisi è lo sviluppo di diagrammi pressione-
impulso per diverse forme di carico. I diagrammi pressione-impulso vengono
costruiti in modo analogo ai diagrammi di interazione momento-azione assiale
per le colonne, e rappresentano un metodo grafico molto utile per l’assessment
preliminare degli elementi strutturali soggetti a carichi esplosivi. Infatti, in
funzione delle condizioni a cui è soggetta una piastra assunta come provino (tra
cui la pressione massima, la forma dell’impulso, le caratteristiche dei materiali),
è possibile determinare immediatamente se la struttura risulterà danneggiata,
collocando un punto nel diagramma pressione-impulso.

Parole chiave: carichi esplosivi, assessment strutturale, sistemi ad un grado
di libertà, piastre circolari, diagrammi pressione-impulso, meccanismo di col-
lasso.
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Introduction

It is very well known the importance of safety in civil structures and moreover,
during the last years, it has been highlighted and required by the national and
international codes of design and construction, in order to avoid disaster events.
These requirements have been evolving along the time, making them more rig-
orous. This evolution is coming from the necessity to take into account real
factors that influence the structural behaviour, factors which were not consid-
ered in the past or new factors created by the human behaviour evolution. In
the same way, new tools or more efficient tools are needed in order to supply
this necessity, having an evolution of design techniques as well.

Blasting is one of those new factors which has gained great importance and
popularity during the last years. The evidence of this fact could be illustrated by
many examples like explosion of storage flammable materials, vehicle collisions,
terrorist attacks and others (Lu, 2009). When one of these unwanted events
occurs, energy is liberated destroying what is around it. Generally structures like
buildings, tunnels, bridges, etc. are conceived to have the presence of big amount
of people; if blasting loads reach these important structures, the catastrophic
effects would be greater than those produced by the explosion itself, because
the weakening of one part of the structure could lead to the entire collapse of
it, causing lost of human lives and economic goods.

The present work consists in the dynamic analysis of circular slabs subjected
to blast loads. This work aims at the construction of pressure-impulse diagrams
for several types of blast loading patterns. In order to obtain these diagrams is
necessary to assess the maximum resistance of slabs through a dynamic simula-
tion of their behaviour. Blast loads vary with time and their main parameters
are pressure and impulse, therefore it is needed a dynamic analysis.

This work concerns in the theoretical treatment of two cases: the first one
consists in a simply supported circular slab and the second one corresponds to
a circular slab on grade, where the grade is modelled as a Winkler soil. Each
case is analysed for two types of material: reinforced concrete (R/C) and fibre
reinforced concrete (FRC). The use of these materials has a great connotation
because most of the slab or shell structures are designed and built with these
types of material.
Many authors have already tackled the issue of concrete pavement slabs sub-
jected to blast loading (Luccioni and Luege, 2006; Zhou et al., 2008), whilst
several others concentrated on the internal explosion of box-type buried struc-
tures (Ma et al., 2009; Park and Krauthammer, 2009; Feldgun et al., 2008; Wang
and Tan, 1995), thus giving special attention to the soil-structure interaction
aspect of the problem.

Pressure-impulse diagrams are very useful in the practical-design field, since
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they represent a powerful tool that allows to assess directly, in a graphical
way, the resistance of a structural element subjected to a determinate type of
explosive event. We are talking about a wide field of applications; e.g., tunnel
design, foundations, elevated slabs and plates can take advantage of this work
in order to improve designs, maintenance and control of structures. Concerns in
blast-resistant design by means of pressure-impulse diagrams have been tackled
by Alaoui and Oswald (2007) considering precast and prestressed structures;
El-Dakhakhni et al. (2009) focused on the capacity assessment of RC columns
subjected to blast; Lan et al. (2005) and Li et al. (2009) studied composite
structural elements subjected to explosive loadings, whilst Lan et al. (2005)
considered fibre reinforced plastic slabs tackling the problem of the retrofitting
of blast damaged structures.

Moreover, the results of this work could be compared with the results ob-
tained from experimental test (e.g., from the shock tube tests). The shock tube
test is specifically created to simulate accurately the shock pressure produced by
an explosion. The shock tube test is intended to evaluate the maximum resis-
tance of circular plates made of different materials and under several boundary
conditions.

Thesis outline

The present work is organized in the following way. In the first chapter a quick
outline of the main concepts about blasting phenomena will be presented. In
chapter 2 the fundamentals of the elastic theory of plates will be reviewed.
Chapter 3 will tackle the problem of the vibration of plates, focusing on the
variational approach, the virtual work theorem and the numerical solutions,
including also a short review of the upper bound theorem from the theory of
plasticity. In chapter 4 the basic concepts about pressure-impulse diagrams
will be presented, giving special attention to the algorithms used in the present
work for their development. All the first four chapters will tackle the problems
of interest from a pure theoretical point of view. In addition to the theoretical
concepts, in chapter 5 some applicative examples will be solved and discussed,
developing the theory presented in the previous chapters. The cases under study
will be represented by a simply supported circular plate and a circular slab on
grade.
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Chapter 1

Blasting phenomena

1.1 Generalities

In spite of explosion events occurred due to several reasons, the engineering
profession in general is not well tended to design structures able to resist under
explosive loading. This happens because specifications have rarely included
explosive loading as a factor in design, and also because dynamic effects of
explosions on structures have only been examined as research subjects in a
small number of experimental test (Lu, 2009; Gong et al., 2009; Ishikawa and
Beppu, 2007; Li et al., 2009).

Actually in many countries the experimental research has been left to the
armed service, government or larger industrial explosive manufacturers. Very
often, the results are not openly reported due to security restrictions. However,
there are several useful texts on the physics of explosions, the science of deto-
nation and the design of protective structures. Unfortunately, these were not
well collected or did not show a specific examination of the fundamentals and
did not present parameters and coefficients that could influence future design
and research.

1.2 Detonation and shock in free air

Detonation propagates as a wave through gas in a very similar way to the
propagation of a shock wave through air (Bulson, 1997). This similitude was
inspired by earlier work on the theory of sound and sound waves by Earnshaw
(1860) and Lamb (1895). The publication of their works on the motion of fluids
coincided with the beginning of the interest in explosions.
The most useful analysis of the detonation process was set down by G. I. Taylor
in a paper written for the UK Civil Defence Research Committee, Ministry
of Home Security, in 1941, during the Second World War (Bulson, 1997). He
took a cylindrical bomb, in which the charge was detonated from one end and
the reaction might advance along the length of the bomb at a speed of over
600 m/sec if the charge were TNT. The internal pressure forces the casing to
expand, the expansion being greatest at the initiating end. When the casing
breaks, the explosive gases escape and form an incandescent zone that expands
so rapidly that a shock wave or pressure pulse is formed.

3
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The dynamic loading of structures from detonating explosions is due to the
instantaneous or very fast increase in air pressure associated with the shock
front, and to the transient forces associated with the blast winds that follow the
passage of the shock front.

1.3 Pressure-time function

The form of the overpressure-duration relationship for a high explosive or nu-
clear explosion in air is shown in figure 1.1, where p is overpressure (or air blast
pressure) and t is time. In the figure the decay of pressure after the first instan-
taneous rise is expressed exponentially. There are other ways to indicate the
form of the pressure-time relationship, as it will be shown later.
The value of the peak instantaneous overpressure p0 will depend on the distance
of the point of measurement from the centre of the explosion. The duration of
the positive phase is t0 units of time.
Theoretically, for a perfectly spherical charge in air, the relationship between
p0, the distance of the point of measurement from the centre of the explosion
(R), and the instantaneous energy release (E), takes the form:

p0 =
KE

R3
(1.1)

In imperial units E is measured in ft·lb, and in SI units in joules; K = p0 ·R3/E
is a non-dimensional parameter.

For a given type of chemical high explosive, energy is proportional to total
weight, then equation 1.2 changes for design purposes as:

p0 =
K1W

R3
(1.2)

where K1 is a dimensional parameter.
Some other pressure-time functions, like an improved version that was pro-

posed in the US Army Technical Manual Fundamentals of Protective Design
(Non-nuclear), argue that the previous equation did not give very accurate val-
ues of p0 over the entire time range. Therefore it was proposed a new function:

p0 =
4120

z3
− 105

z2
+

39.5

z
(1.3)

where p0 is the peak pressure in psi and z = R/W 1/3 (with R in feet and W
in lb), with W being the equivalent weight of charge in TNT. The relationship
should only be applied when 2 < p0 < 160 psi, and 3 < R/W 1/3 < 20 ft/lb1/3.

The pressure-distance characteristics discussed above only apply to a truly
spherical charge in air, but in many practical circumstances the shape of the
charge is cylindrical, or a plane sheet, or a line source such as detonating cord.
Figure 1.2 illustrates the dependency of the pressure with the distance for dif-
ferent kind of charge shapes.
So far it was discussed mainly the free field conditions that result from many
types of explosion, anyway it is interesting to notice that the propagation of air
blast through closed structures, like systems of tunnels, can change. Figure 1.3,
taken from Philip (1944), can illustrate this behaviour for a straight tunnel.
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p/p0 = (1 - t/t0) exp(- t/t0)

p/p0

t/t0

positive

phase

negative phase

Figure 1.1: Overpressure-duration curve for detonation in air (idealization with
exponential decay).

Figure 1.2: Peak overpressure vs range for various charge shapes (Lindberg and
Firth, 1967).
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Figure 1.3: Peak pressure from a charge exploding inside a tunnel (Philip, 1944).
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1.4 The shock tube

The shock tube is intended to simulate a scenario in which a spread pressure
shocks against a representative structure sample (figure 1.4). The shock tube
diameter depends on the specimen dimensions. In the case of tunnels, a portion
of a lining segment will be represented as a circular slab in the shock tube test.
Circular slabs represents very well the tunnel segment as long as the tunnel
curvature is small. It is not practical having shock tube diameters as big as
tunnel segments, that is why the real tunnel dimensions are scaled, for instance
with factor of 1:3 (Colombo et al., 2010).
The shock tube consists of two rigid cylindrical chambers of equal cross section,
named high pressure and low pressure chamber, respectively, which are sepa-
rated by a diaphragm. The gas contained in the high pressure chamber (driver)
causes the diaphragm rupture, leading to a rapid expansion of gas trough the
low pressure chamber (driven). The result of this experience is a shock wave
propagation along the driven section. When shock and expansion waves reach
the close ends they are reflected and start moving toward the center of the shock
tube, interacting at the same time with the induced flow (Colombo et al., 2010).

p0

tunnel

diaphragm

driver

driven

explosion

SHOCK TUBE

soil

Figure 1.4: Sketch of an underground tunnel explosion and corresponding ex-
perimental test (Colombo et al., 2010).





Chapter 2

Elastic theory of plates

In this chapter the elastic theory of plates will be reviewed following different
authors, amongst the others Timoshenko and Woinowsky-Krieger (1959), Bel-
luzzi (1966), Selvadurai (1979), Ventsel and Krauthammer (2001), Corigliano
and Taliercio (2005). Along this chapter, the elastic theory of plates is explained
starting from the general theory, passing through rectangular plates and finish-
ing with the theory of thin plates. All this process describes how to derive the
elastic equations for circular thin plates. These equations are achieved via a
transformation of the reference system from rectangular to polar coordinates.
The axial symmetry of circular plates simplifies the problem to one spatial vari-
able r, thus making the dynamic analysis more manageable.

2.1 The plate model

Let’s now consider a generic plate element as shown in figure 2.1. The plate
model can be viewed as a bidimensional extension of the beam model. The
basic idea is to analyse the plate deformation by studying the deformation of
its middle plane. In this way, the state of deformation will be associated to
the loads acting in the middle plane of the plate. As in the beam model the
beam deformation is analyse by studying its axis, analogously herein the plate
deformation is analysed by referring to its middle plane.
The displacement in the vertical direction z is defined as w ≡ w(x, y), i.e., it

is function of x and y, but not of z.
The hypotheses made in order to develop the plate model are the following ones:

• small displacements and small deformations;

• homogeneous, isotropic, Green iper-elastic material (i.e. there exists a
potential function by which stresses and strains can be represented);

• the medium is a Cauchy continuum (that is, the stress-state tensor is
symmetric, and there are no distributed microcouples);

• two geometrical dimensions are prevalent with respect to the third one;

• σz = 0, hypothesis that does not allow to represent the state of stress
diffusivity.

9
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x, u

y, v

z, w

p(x,y)

Figure 2.1: A generic plate element with the reference system located in its
middle plane.

The kinematic model of the deflected plate assumes that a generic straight
segment, initially perpendicular to the middle plane (see figure 2.2), after the
deformation it is still straight. Not necessarily, after the deformation, the generic
straight segment is still perpendicular to the deformed mid plane, as shown in
figure 2.3.
Within this discussion the focus will be on the flexural behaviour of plates,
thus only forces acting perpendicularly to the middle plane will be considered,
decoupling the flexural problem from the one related to the forces acting parallel
to the middle plane (membrane theory).

Displacement components. The local displacement vector is represented
by:

s(x, y, z) =

uv
w

 =

−zϕx(x, y)
−zϕy(x, y)
w(x, y)

 (2.1)

where:

• u is the displacement component in the x direction;

• v is the displacement component in the y direction;

• w is the displacement component in the z direction.

and ϕx(x, y), ϕy(x, y) and w(x, y) are the generalized displacements:

• ϕx(x, y) is the rotation around the y axis occurring in the x-z plane;

• ϕy(x, y) is the rotation around the x axis occurring in the y-z plane;

• w(x, y) is the middle plane displacement in the vertical direction z.
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x, u

y, v

z, w
P

Figure 2.2: A generic point on the generic straight segment initially orthogonal
to the plate middle plane.

The displacement vector can be rewritten as:

s = n · U (2.2)

where U is the vector of generalized displacements:

U =

w(x, y)
ϕx(x, y)
ϕy(x, y)

 (2.3)

and n is the correlation matrix between local displacements and generalized
ones:

n =

0 −z 0
0 0 −z
1 0 0

 (2.4)

Strain components. The strain components can be worked out by means of
the compatibility equations:

ε =


εx
εy
εz
γxy
γxz
γyz

 =


u,x
v,y
w,z

u,y + v,x
u,z + w,x
w,y + v,z

 =


−zϕx,x
−zϕy,y

0
−zϕx,y − zϕy,x
−ϕx + w,x
−ϕy + w,y

 = b · q (2.5)
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x, u

y, v

z, w

P

P’

φx

z

undeformed

middle plane

deformed

middle plane

-z φx

all the membrane components are 

neglected in the flexural theory in 

order to decouple the two problems

Figure 2.3: A section of a plate, traced in the x-z plane, before and after the
deformation.
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where q is the vector of generalized strains and b is the correlation matrix
between local strains and generalized ones.

q =


−ϕx,x
−ϕy,y

−(ϕx,y + ϕy,x)
−ϕx + w,x
−ϕy + w,y

 =


χx
χy
χxy
tx
ty

 (2.6)

The terms denoted with χ are the generalized curvatures; in particular, χxy
is the torsional curvature. The terms tx and ty represent the shear angular
deformations.

b =


z 0 0 0 0
0 z 0 0 0
0 0 z 0 0
0 0 0 1 0
0 0 0 0 1

 (2.7)

Load components. The generalized loads will be worked out by using the
definition of external specific work per unit area.

F =

FxFy
Fz

 (2.8)

The external specific work per unit area is given by:

dWE

dA
=

∫ +h/2

−h/2
Fiδŝi dz = PT δÛ =

∫ +h/2

−h/2
δŝTF dz (2.9)

where:

• δŝi is the virtual displacement field;

• P is the vector of the generalized loads.

dWE

dA
= δÛ

T
∫ +h/2

−h/2
nT · F dz = PT δÛ = δÛ

T
· P (2.10)

From the last equation one can read the expression that give rise to the gener-
alized loads:

P =

∫ +h/2

−h/2
nT · F dz (2.11)

Substituting the expressions for n and F one can get:

P =

∫ +h/2

−h/2

 0 0 1
−z 0 0
0 −z 0

 ·
FxFy
Fz

 dz (2.12)

=

∫ +h/2

−h/2

 Fz
−zFx
−zFy

 dz (2.13)

=

 p(x, y)
mx(x, y)
my(x, y)

 (2.14)
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Note that p(x, y) is dimensionally a force per unit area (i.e., a surface distributed
load, [F/L2]), whilst mx(x, y) and my(x, y) are moments per unit length (i.e.,
they have the dimension of a force, [F]).
It should be noted that there is no explicit information about the points where
the generalized loads are acting; it is only the assumption made by the model
that permits to tell that they act in the middle plane of the plate, as shown in
figure 2.4.

x, u

y, v

z, w
mx

Fx

z

p(x,y)

z

Fy

my

Figure 2.4: Generalized loads acting on a rectangular plate element.

Stress components. In order to work out the generalized stresses, the defi-
nition of internal specific work per unit area will be exploited:

dWI

dA
=

∫ +h/2

−h/2
δε̂T · σ dz = δqT

∫ +h/2

−h/2
b · σ dz = δqT ·Q (2.15)

where:

• δε̂ are the virtual local strains;

• σ are the local stresses;

• Q is the vector containing the generalized stresses.

The local deformations are related to the generalized ones by means of the
correlation matrix b:

ε = b · q (2.16)

The expression needed in order to work out the vector of the generalized stresses
can be easily read from equation 2.15:

Q =

∫ +h/2

−h/2
b · σ dz (2.17)
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Performing the computations one can finally obtained:

Q =

∫ +h/2

−h/2


z 0 0 0 0
0 z 0 0 0
0 0 z 0 0
0 0 0 1 0
0 0 0 0 1

 ·

σx
σy
τxy
τxz
τyz

 dz (2.18)

=



∫ +h/2

−h/2 zσx dz∫ +h/2

−h/2 zσy dz∫ +h/2

−h/2 zτxy dz∫ +h/2

−h/2 τxz dz∫ +h/2

−h/2 τyz dz


=


Mx

My

Mxy

Vx
Vy

 (2.19)

where σx and σy are the normal stresses, whilst τxy, τxz and τyz are the tan-
gential stresses. The distance of the point of application of such stresses from
the middle plane is denoted as z, as can be seen in figure 2.5.
The generalized moments Mx, My and Mxy have the dimension of a force (i.e.,
they are moments per unit length, [F]), whilst the shear terms Vx and Vy have
the dimensions of a force per unit length, i.e. [F/L].
All the local and generalized stresses, along with the directions in which they are
acting, are graphically illustrated in figure 2.5. The moments are represented
as vectors; z represents the stresses lever arm with respect to the middle plane.

2.2 Plate equilibrium problem

There are three different ways to study the problem of the plate equilibrium:

• by using the virtual work principle;

• by using the integrated equilibrium equations;

• by studying the equilibrium of a plate element.

In this section, the problem of the plate equilibrium will be studied by means
of a rectangular plate element, as illustrated in figure 2.5.

Rotational equilibrium with respect to x axis.

V ′y dxdy−M ′y dx+My dx+M ′xy dy+Mxy dy+ p(x, y) dx dy
dy

2
+my dxdy = 0

(2.20)

The term p(x, y) dxdy
dy

2
is dropped out since it represents an infinitesimal of

higher order.(
Vy +

∂Vy
∂y

dy

)
dx dy −

(
My +

∂My

∂y
dy

)
dx+My dx

−
(
Mxy +

∂Mxy

∂x
dx

)
dy +Mxy dy +my dxdy = 0 (2.21)
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MyVy

Vx

Mx

Myx

V’x

M’x

M’xy

x, u

y, v

τ’xz

σ’x

z

z

z

zz

σ’y

τ’xy

V’y

τ’yz

M’y

M’yx

τ’yx

Mxy
τxy

z, w

Figure 2.5: Equilibrium of a rectangular plate element.

Vy −
∂My

∂y
− ∂Mxy

∂x
+my = 0 (2.22)

Finally:

Vy =
∂My

∂y
+
∂Mxy

∂x
−my (2.23)

Rotational equilibrium with respect to y axis.

V ′x dydx−M ′x dy+Mx dy−M ′yx dx+Myx dx+ p(x, y) dxdy
dx

2
+mx dy dx = 0

(2.24)

The term p(x, y) dxdy
dx

2
is dropped out since it represents an infinitesimal of

higher order.(
Vx +

∂Vx
∂x

dx

)
dy dx−

(
Mx +

∂Mx

∂x
dx

)
dy +Mx dy

−
(
Myx +

∂Myx

∂y
dy

)
dx+Myx dx+mx dy dx = 0 (2.25)

Vx −
∂Mx

∂x
− ∂Myx

∂y
+mx = 0 (2.26)

Finally:

Vx =
∂Mx

∂x
+
∂Myx

∂y
−mx (2.27)

Translational equilibrium.

∂Vx
∂x

dx dy +
∂Vy
∂y

dy dx+ p(x, y) dxdy = 0 (2.28)

∂Vx
∂x

+
∂Vy
∂y

+ p(x, y) = 0 (2.29)
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Plate equilibrium equation. Substituting equations 2.23 and 2.27 into equa-
tion 2.29 one can work out the equilibrium equation of the rectangular plate
element:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
+ p(x, y)− ∂my

∂y
− ∂mx

∂x
= 0 (2.30)

Generalized constitutive relationship. In order to develop the generalized
constitutive relationship, the definition of elastic specific energy per unit area
will be exploited. Recalling the local constitutive relationship σ = D ε, where
D is the stiffness matrix:

D =
E

1− ν2



1 ν 0 0 0
ν 1 0 0 0

0 0
1− ν

2
0 0

0 0 0
1− ν

2
0

0 0 0 0
1− ν

2


(2.31)

one can write down the elastic specific energy per unit area:

dΩ

dA
=

1

2

∫ +h/2

−h/2
εT · σ dz =

1

2
qT
∫ +h/2

−h/2
bT ·D · bdz q =

1

2
qT ·D∗ · q (2.32)

From the last expression it is clear that the generalized stiffness matrix D∗ is
equal to:

D∗ =

∫ +h/2

−h/2
bT ·D · bdz (2.33)

=

∫ +h/2

−h/2


z 0 0 0 0
0 z 0 0 0
0 0 z 0 0
0 0 0 1 0
0 0 0 0 1

 · E

1− ν2



1 ν 0 0 0
ν 1 0 0 0

0 0
1− ν

2
0 0

0 0 0
1− ν

2
0

0 0 0 0
1− ν

2


·


z 0 0 0 0
0 z 0 0 0
0 0 z 0 0
0 0 0 1 0
0 0 0 0 1

 dz

(2.34)

Remembering that the moment of inertia of a unit length element is given by:∫ +h/2

−h/2
1 · z2 dz = I (2.35)

one can finally work out D∗ as follows:

D∗ =
EI

1− ν2



1 ν 0 0 0
ν 1 0 0 0

0 0
1− ν

2
0 0

0 0 0

(
1− ν

2I

)
h 0

0 0 0 0

(
1− ν

2I

)
h


(2.36)
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The generalized stiffness matrix D∗ just obtained relates the generalized stresses
Q to the generalized strains q:

Q = D∗ · q (2.37)

where Q and q are the vectors:

q =


χx
χy
χxy
tx
ty

 (2.38)

Q =


Mx

My

Mxy

Vx
Vy

 (2.39)

Equation 2.37 can be rewritten in expanded form, giving rise to the following
relationships:

Mx = D(χx + νχy) (2.40)

My = D(χy + νχx) (2.41)

Mxy = D
1− ν

2
χxy =

EI

1− ν2
1− ν

2
χxy =

EI

2(1 + ν)
χxy = GIχxy (2.42)

Vx = Gh tx (2.43)

Vy = Gh ty (2.44)

where:

• D =
EI

1− ν2
is the flexural rigidity factor, which includes all the elastic

constants related to material;

• G =
E

2(1 + ν)
is the shear modulus;

• I =
1 · h3

12
is the moment of inertia of a unit length element.
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2.3 Thin plates theory

If a plate is thin enough with respect to its height, it is possible to neglect the
shear deformations. Usually it is considered that a plate falls into this hypothesis
field if h < min(a, b)/5, where h is the thickness, a and b are the other two
dimensions. Furthermore, also the condition that the maximum displacement of
the plate must be smaller than 1/5 of the thickness should be satisfied (Belluzzi,
1966). If the previous conditions are met, then the generic straight segment
initially perpendicular to the middle plane remains perpendicular to it even
after the deformation. This removes the possibility of having angular (i.e., shear)
deformations. This hypothesis was first studied by Kirchhoff and it is usually
named after him (Timoshenko and Woinowsky-Krieger, 1959). The Kirchhoff’s
hypothesis can be represented by the following mathematical condition:

γxz = γyz = 0 (2.45)

which implies (see equation 2.6):

ϕx =
∂w

∂x
ϕy =

∂w

∂y
(2.46)

Now it is clear from the previous expressions that, under the Kirchhoff’s hy-
pothesis, the rotation of the generic straight segment is exactly equal to the one
of the middle plane, meaning that there are no angular deformations. There-
fore the plate model can be reformulated in this simplified case, obtaining the
expressions reported below.
Local displacement vector:

s =

uv
w

 =

 −zϕx−zϕy
w(x, y)

 =

−zw,x−zw,y
w(x, y)

 (2.47)

Generalized displacement vector:

U =

 w
w,x
w,y

 (2.48)

Generalized strain vector:

q =

 χxχy
χxy

 (2.49)

Local strain vector:

ε =

 εxεy
γxy

 =

 zχxzχy
zχxy

 =

 −zw,xx−zw,yy
−2zw,xy

 (2.50)

The generalized constitutive relationships give rise to the following expressions:

Mx = D(χx + νχy) = −D
(
∂2w

∂x2
+ ν

∂2w

∂y2

)
(2.51)
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My = D(χy + νχx) = −D
(
∂2w

∂y2
+ ν

∂2w

∂x2

)
(2.52)

Mxy = GIχxy = −D(1− ν)

(
∂2w

∂x∂y

)
(2.53)

Recalling the plate equilibrium equation 2.30 and neglecting the terms re-
lated to distributed microcouples:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
+ p(x, y) = 0 (2.54)

Substituting the equations 2.51, 2.52 and 2.53 into equation 2.54 one can get:

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
= −p(x, y)

D
(2.55)

namely:

∇4w(x, y) = −p(x, y)

D
(2.56)

which is the Sophie Germain - Lagrange equation for thin plates (i.e., plates
under the Kirchhoff hypothesis). It should be noticed that this equation in-
cludes in itself the equilibrium condition, the compatibility equation and the
constitutive relationship. It appears as a generalization to the bidimensional
case of the unidimensional Euler-Bernoulli equation for beams (Timoshenko
and Woinowsky-Krieger, 1959).
In equation 2.56 appears the symbol∇4 which represents the Laplacian operator
of fourth order. The Laplacian of a function allows to compare the function at
a point with the function at neighbouring points (Farlow, 1993). The Laplacian
of fourth order can be viewed as a generalization of the unidimensional fourth
derivative to higher dimension.

2.3.1 Circular plates

Since in the present work only circular plates will be analysed, it is convenient
to express the governing differential equation in polar coordinates, which can be
easily achieved by performing a coordinate transformation. Figure 2.6 illustrate
the equilibrium of a circular plate element.
The geometrical relationships between Cartesian and polar coordinates are:

x = r cos θ y = r sin θ r2 = x2 + y2 θ = arctan
(y
x

)
(2.57)

∂r

∂x
=
∂
√
x2 + y2

∂x
=

2x

2
√
x2 + y2

=
x

r
= cos θ (2.58)

∂r

∂y
=
∂
√
x2 + y2

∂y
=

2y

2
√
x2 + y2

=
y

r
= sin θ (2.59)

∂θ

∂x
=

arctan
(y
x

)
∂x

= −

y

x2

1 +
(y
x

)2 = − y

r2
= − sin θ

r
(2.60)
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Mθ

Mθr

x, u
y, v

z, w Qθ

p(r,θ)

M’rθ

M’r

Q’r

Mr

Qr
Mrθ

M’θr

M’θ

Q’θ

h

dθ r dθ

dr

r

θ

Figure 2.6: Equilibrium of a circular plate element.

∂θ

∂y
=

arctan
(y
x

)
∂y

=

1

x

1 +
(y
x

)2 =
x

r2
=

cos θ

r
(2.61)

Applying the chain rule:

∂w

∂x
=
∂w

∂r

∂r

∂x
+
∂w

∂θ

∂θ

∂x
=
∂w

∂r
cos θ − 1

r

∂w

∂θ
sin θ (2.62)

Now it should be noted that for an axis-symmetric problem, like all the ones
that will be treated in the present work, holds:

∂

∂θ
= 0 (2.63)

i.e., all the terms involving partial derivatives with respect to θ can be dropped
out. Therefore the previous expression can be simplified:

∂w

∂x
=
∂w

∂r

∂r

∂x
=
∂w

∂r
cos θ (2.64)

To evaluate the term ∂2w/∂x2 the previous operation must be repeated twice,
obtaining:

∂2w

∂x2
=
∂2w

∂r2
cos2 θ +

∂w

∂r

sin2 θ

r
(2.65)

Analogously:
∂2w

∂y2
=
∂2w

∂r2
sin2 θ +

∂w

∂r

cos2 θ

r
(2.66)

∂2w

∂x∂y
=
∂2w

∂r2
sin 2θ

2
− ∂w

∂r

sin 2θ

2r
(2.67)
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Adding term by term:

∇2
rw ≡

∂2w

∂x2
+
∂2w

∂y2
=
∂2w

∂r2
+

1

r

∂w

∂r
(2.68)

Repeating the operation twice, one can get the governing differential equation
for axis-symmetric plates in polar coordinates:

∇4
rw(r, θ) ≡

(
∂2

∂r2
+

1

r

∂

∂r

)(
∂2w

∂r2
+

1

r

∂w

∂r

)
=
p(r, θ)

D
(2.69)

Since the plate geometry is symmetric and also the load distribution will be
assumed to be axis-symmetric throughout this work, the previous equation can
be simply rewritten as:

∇4
rw(r) =

p(r)

D
(2.70)

From the expressions outlined above the curvatures in polar coordinates can
be worked out (assuming that x axis is taken in the direction of the radius r,
at θ = 0, in order to simplify the derivations):

χx = χr = −∂
2w

∂x2
= −∂

2w

∂r2
(2.71)

χy = χθ = −∂
2w

∂y2
= −1

r

∂w

∂r
(2.72)

χxy = χrθ = − ∂2w

∂x∂y
= 0 (2.73)

Now the relationships between moment and curvatures:

Mr = Mx = D(χx + νχy) = −D
(
∂2w

∂r2
+ ν

1

r

∂w

∂r

)
(2.74)

Mθ = My = D(χy + νχx) = −D
(

1

r

∂w

∂r
+ ν

∂2w

∂r2

)
(2.75)

Mrθ = Mxy = D(1− ν)χxy = 0 (2.76)

Elastic strain energy computation:

U =
1

2

∫∫
S

(Mxχx +Myχy + 2Mxyχxy) dS (2.77)

=
1

2

∫∫
S

(D(χx + νχy)χx +D(χy + νχx)χy + 2D(1− ν)χ2
xy) dS (2.78)

=
1

2
D

∫∫
S

(χ2
x + χ2

y + 2νχxχy + 2(1− ν)χ2
xy) dS (2.79)

=
1

2
D

∫∫
S

(χ2
x + χ2

y + 2χxχy − 2χxχy + 2νχxχy + 2(1− ν)χ2
xy) dS (2.80)

=
1

2
D

∫∫
S

((χx + χy)2 − 2χxχy(1− ν) + 2(1− ν)χ2
xy) dS (2.81)

=
1

2
D

∫ 2π

0

∫ R

0

[
(χx + χy)2 − 2(1− ν)(χxχy − χ2

xy)
]
r dθ dr (2.82)
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Finally, substituting the expressions of the curvatures into equation 2.82:

U =
1

2
D

∫ 2π

0

∫ R

0

[(
∂2w

∂r2
+

1

r

∂w

∂r

)2

− 2(1− ν)

(
∂2w

∂r2
1

r

∂w

∂r

)]
r dθ dr (2.83)

This result can also be found in Clough and Penzien (1993). Since, as was
previously mentioned, the plate deflection shape does not depend on θ, the
plate equation 2.70 can be rewritten in terms of total derivatives:

∇4
rw(r) ≡

(
d2

dr2
+

1

r

d

dr

)(
d2w

∂r2
+

1

r

dw

dr

)
=
p(r)

D
(2.84)

Introducing the identity:

∇4
rw(r) ≡ d2w

dr2
+

1

r

dw

dr
=

1

r

d

dr

(
r

dw

dr

)
(2.85)

Equation 2.84 now becomes:

1

r

d

dr

{
r

d

dr

[
1

r

d

dr

(
r

dw

dr

)]}
=
p(r)

D
(2.86)

The solution of this equation is given by a sum of the solution of the asso-
ciated homogeneous differential equation wh and the particular solution wp:

w = wh + wp (2.87)

The solution of the associated homogeneous form of 2.86 is worked out:

wh = C1 ln r + C2r
2 ln r + C3r

2 + C4 (2.88)

where C1, C2, C3 and C4 are constants that can be evaluated from the boundary
conditions. The particular solution wp is obtained by successive integration of
equation 2.86:

wp =

∫
1

r

∫
r

∫
1

r

∫
r p(r)

D
dr dr dr dr (2.89)

If the slab is subjected to a uniform distributed load with intensity constant in
the radial direction equal to p(r) = p0, the particular solution is:

wp =
p0r

4

64D
(2.90)

Therefore the general solution of equation 2.86 is:

w(r) = C1 ln r + C2r
2 ln r + C3r

2 + C4 +
p0r

4

64D
(2.91)

Mr = −D
[
C1

1− ν
r2

+ 2C2(1 + ν) ln r + C2(3 + ν) + 2C3(1 + ν) +
p0r

2

16D
(3 + ν)

]
(2.92)

Particular cases of boundary conditions must be considered in order to deter-
mine the four constants. This will be done in chapter 5, where two cases of
practical interest will be thoroughly presented and solved.





Chapter 3

Dynamic analysis of
circular plates

3.1 Generalities

An exact dynamic analysis is possible only for relatively simple structures (i.e.,
trusses, lumped structures, framed structures, unidimensional and some bi-
dimensional simple structures). Rigorous analytic solutions are possible only
when the load-time and resistance-displacement variations can be represented by
convenient mathematical functions which can be handled quite easily (Kaplunov
et al., 1998). Therefore it is useful, at least for practical design purposes, to
adopt approximate methods which permit to perform analyses of even complex
structures with reasonable accuracy (Biggs, 1964).
However, for many complex structural elements, it is too difficult to determine
the exact modal shapes, therefore even the fundamental mode must be approx-
imated (Biggs, 1964); generally it is very useful to adopt the elastic shape of
deformation, normalized with respect to the maximum displacement.
It should be pointed out that structural dynamics problems usually involve sig-
nificant uncertainties, in particular when defining the load-time function. For
this reason, complex methods of analysis are often not justified, since it is a
waste of time to employ methods having precision much greater than that of
the input of the analysis (Biggs, 1964).

3.2 Governing differential equation

The dynamics of plates, which are systems with distributed mass and elasticity,
can be modelled by using partial differential equations based on Newton’s laws
or by integral equations based on the principle of virtual displacements (Ventsel
and Krauthammer, 2001). Within this framework, circular plates subjected to
a uniform distributed load will be considered.
For design purposes only the lateral vibration is of interest, and the effects of
extensional vibrations in the middle plane can be neglected. Therefore, the in-
ertia forces, associated with the lateral translation of the plate, are considered
(Ventsel and Krauthammer, 2001).

25
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Damping effects are caused either by internal friction of the plate or by the
surrounding media. Even though structural damping is theoretically present in
all plate vibrations, in practice it has no effect on the natural frequencies and
on the steady-state amplitudes; for this reason, it can be safely neglected in the
preliminary discussion of the problem (Ventsel and Krauthammer, 2001).
The derivation of the governing differential equation of motion of plates can be
obtained as an extension of the static case by adding effective forces that result
from accelerations of the mass of the plate (the inertia forces).
By exploiting the D’Alambert’s principle, the inertia forces can be added as
reversed effective forces; moreover, even other time-varying forces (e.g., the
damping forces) may be considered.
A plate can undergo a free vibration motion, which occurs in the absence of
applied loads but may be initiated by applying initial conditions to the plate
(Ventsel and Krauthammer, 2001). The free vibration motion is related to the
plate natural characteristics, i.e. it depends only on the geometry and material
of the plate. After this stage, there is a forced vibration motion, which is related
to the application of a time-varying load. If the load applied to the plate has
a periodicity, the forced vibration response will be harmonic; otherwise, it will
give rise to a transient response.
The governing differential equation of motion will be worked out according to
the thin plate theory, as presented in the previous chapter; i.e., the Kirchhoff’s
hypothesis will be exploited.
In order to model the undamped structural dynamics of plates, the elastic static
equations derived in chapter 2 (equation 2.56 and equation 2.70) can be conve-
niently modified by including the time-varying variables.
If the applied dynamic loads and the inertia forces, as computed according to
the D’Alambert’s principle, are considered, the forcing term in the governing
differential equation for the bending of thin circular plates becomes:

p(r, t)− fI(r, t) = p(r, t)−mẅ(r, t) = p(r, t)− ρh ∂
2w(r, t)

∂t2
(3.1)

where:

• p(r, t) is the external applied load, expressed in terms of pressure distri-
bution. Within this work the pressure will be considered to be uniformly
distributed over the entire plate surface, thus the load will not be spatially
variable but only function of the time, namely p(t);

• fI(r, t) are the inertia forces;

• m = ρ h is the mass per unit area, where ρ is the concrete density.

Finally the differential equation of forced, undamped motion of thin circular
plates results in:

D∇4
rw(r, t) = p(r, t)− ρh ∂

2w(r, t)

∂t2
(3.2)

A rigorous analytic solution of the governing differential equation 3.2 is achiev-
able only in a limited number of simplified cases concerning plate geometry and
boundary conditions (Ventsel and Krauthammer, 2001).
In this work, the dynamic analysis of plates treated as single-degree-of-freedom
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(SDOF) systems will be developed, first according to the principle of virtual dis-
placements and then according to the classical variational approach proposed
by Lord Rayleigh (Chopra, 1995).

3.2.1 The equivalent SDOF method

In order to perform the dynamic analysis of a plate, which is a structural element
with distributed mass and elasticity, the mass, the stiffness and the loading are
replaced in the equation of motion with the equivalent values for a lumped mass-
spring system (Morison, 2006). This is achieved by using either the principle
of virtual displacement or the variational approach based upon energy. These
approaches permit to obtain an equivalent system having kinetic energy, strain
energy and external work equal to the distributed system.
The transformation coefficients which have to be applied to the distributed sys-
tem in order to obtain the equivalent one are mainly a function of the assumed
shape function of the deflected element. Actually, a structural element like a
plate can deflect in an infinite variety of shapes, and for exact analysis it should
be treated as an infinite-degree-of-freedom system (Chopra, 1995). However, it
is possible to achieve approximate results with a certain degree of accuracy by
restricting the deflections of the plate to a unique shape function ψ(r), which
can be viewed as an approximation of the fundamental mode of vibration. The
shape function can be defined as the deflected shape at all points of the struc-
tural element, divided by the deflection at a chosen reference point, e.g. the
point of maximum deflection; the accuracy of the approximation depends upon
the particular deflected shape assumed. In general, any shape function con-
sistent with the constraints of the supports may be assumed, but a good ap-
proximation is achieved when the static shape under the same load distribution
of the blast loading is considered (Morison, 2006). Once a shape function has
been hypothesized, the deflections over the entire plate area will be related only
to the single displacement assumed as a reference (e.g., the midspan one), be-
ing this called the generalized SDOF. In other words, at a generic time instant
t, the displacements at all locations of the plate are defined by means of the
generalized coordinate z(t) through the shape function ψ(r), namely the plate
deflections will be given by w(r, t) = ψ(r) z(t).
One may need to assume, as will be done in this work, different shape functions
according to the different stages of deformation which occur for an elastoplastic
structural member; in such case there will be different transformation factors
related to the corresponding shape function assumed for each different stage of
the model.
In general, the equation of motion for a generalized SDOF has the following
form:

m∗z̈(t) + c∗ż(t) + k∗z(t) = p∗(t) (3.3)

where m∗, c∗, k∗ and p∗(t) are called the generalized mass, generalized damping,
generalized stiffness and generalized load of the equivalent system, respectively.
Within this work, only undamped motion will be studied, thus c∗ will be set
equal to zero, since, as was previously mentioned, it can be safely neglected in
a preliminary discussion of the problem. Once obtained equation 3.3, one can
apply the same procedures which can be found in literature for the dynamic
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response analysis of a SDOF system.
According to Biggs (1964), it is possible to normalize the transformation factors
by using the corresponding total parameters, obtaining:

KM =
m∗

mt
(3.4)

KR =
k∗

kt
(3.5)

KL =
p∗(t)

pt(t)
(3.6)

where:

• KM , KR and KL are called the mass factor, resistance factor and load
factor, respectively;

• mt is the total mass [M];

• kt is the force per unit displacement [F/L];

• pt(t) is the total load [F].

Once the transformation coefficients have been normalized, the equation of mo-
tion stated above (equation 3.3) can be rewritten as:

KM mt z̈(t) +KR kt z(t) = KL p(t) (3.7)

Obviously, the key aspect in the procedure just explained is in the evaluation
of the transformation coefficients, computed, as previously mentioned, either by
means of the principle of virtual displacements or by means of the variational
approach, which will be both reviewed in the following subsections.
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3.2.2 The principle of virtual displacements

As was previously mentioned, to approximate the motion of a plate system
with a single degree of freedom it is necessary to assume that it will deform
only in a single shape. The symmetry of circular plates and the transformation
to polar coordinates allow to simplify even more the problem, expressing the
shape function with dependence of only the variable r. The shape function
will be called ψ(r), and the amplitude of the motion will be represented by the
generalized coordinate z(t); thus:

w(r, t) = ψ(r)z(t) (3.8)

The shape function adopted is the elastic deformation shape obtained from the
solution of the static case having the same load distribution as occurs in the
blasting event. The equation of motion of this generalized SDOF system can be
formulated conveniently only by work or energy principles, and the principle of
virtual work will be used in this case (Clough and Penzien, 1993). The principle
of virtual work requires the system to be conservative, namely no losses of energy
take place. Then the energy present in the system is composed by the external
virtual work (which is performed by external forces and inertia forces acting
through virtual displacements) and the internal work. The principle of virtual
displacements states that if the system in equilibrium is subjected to virtual
displacements δw(r), the external work δWE is equal to the internal virtual
work δWI (Chopra, 1995):

δWI = δWE (3.9)

The external virtual work is composed by the inertia forces fI(r, t) acting
through the virtual displacement δw(r) and the work done by the external
forces. Referring to a generic circular plate one can write:

δWE =

∫ 2π

0

∫ R

0

p(r, t) δw(r) r dθ dr −
∫ 2π

0

∫ R

0

fI(r, t) δw(r) r dθ dr (3.10)

As was previously mentioned (equation 3.1), the inertia forces can be computed
by using the D’Alambert’s principle and they are equal to:

fI(r, t) = mẅ(r, t) (3.11)

Substituting equation 3.11 into equation 3.10 one can get:

δWE =

∫ 2π

0

∫ R

0

p(r, t) δw(r) r dθ dr −
∫ 2π

0

∫ R

0

mẅ(r, t) δw(r) r dθ dr (3.12)

The internal virtual work is due to the bending moments acting through the
curvatures associated with the virtual displacements:

δWI =

∫ 2π

0

∫ R

0

(Mr δχr +Mθ δχθ + 2Mrθ δχrθ) r dθ dr (3.13)

The same computation was already performed in chapter 2 in order to obtain
the elastic strain energy of a circular plate (see equations 2.82 and 2.83). The
external and internal virtual works are then expressed in terms of the generalized
coordinate z(t) and the shape function ψ(r), i.e. one must consider that:

w′′(r, t) = ψ′′(r) z(t) ẅ(r, t) = ψ(r) z̈(t) (3.14)
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The virtual displacement is chosen to be consistent with the selected shape
function, and the virtual curvature is obtained accordingly:

δw(r) = ψ(r) δz δ[w′′(r)] = ψ′′(r) δz (3.15)

Performing the needed substitutions one can obtain:

δWE = δz

[∫ 2π

0

∫ R

0

p(r, t)ψ(r) r dθ dr − z̈
∫ 2π

0

∫ R

0

mψ2(r) r dθ dr

]
(3.16)

δWI = δz

[
z(t)D

∫ 2π

0

∫ R

0

(
∂2ψ

∂r2
+

1

r

∂ψ

∂r

)2

− 2(1− ν)

(
∂2ψ

∂r2
1

r

∂ψ

∂r

)
r dθ dr

]
(3.17)

Now the substitution of equations 3.16 and 3.17 into equation 3.9 yields:

δz [m∗z̈ + k∗z + L∗p(t)] = 0 (3.18)

with the transformation coefficients equal to:

m∗ =

∫ 2π

0

∫ R

0

mψ2(r) r dθ dr (3.19)

k∗ = D

∫ 2π

0

∫ R

0

[(
∂2ψ

∂r2
+

1

r

∂ψ

∂r

)2

− 2(1− ν)

(
∂2ψ

∂r2
1

r

∂ψ

∂r

)]
r dθ dr (3.20)

L∗ =

∫ 2π

0

∫ R

0

ψ(r) r dθ dr (3.21)

where:

• k∗ = k∗e represents the stiffness of the generalized SDOF in the elastic
phase and k∗ = k∗p = 0 represents the plateau in the plastic phase;

• L∗ is the coefficient that must be applied to the external load in order to
get the generalized load.

As last remark, it is worth noting that the equations for m∗ and L∗ are valid for
the elastic and plastic phase, just taking into account that the shape function
ψ(r) changes from one stage to the other.
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3.2.3 The variational approach

Keeping in mind that, for design purposes, the natural fundamental frequencies
are of the greatest interest, the Rayleigh’s method is a variational energetic ap-
proach which permits to find the lowest natural frequency of a vibrating plate
(Ventsel and Krauthammer, 2001). This principle was developed in the nine-
teenth century by Lord Rayleigh and it is based on the assumption that if the
vibrating system is conservative (i.e., no energy is added or lost), then the max-
imum kinetic energy, Kmax, must be equal to the maximum potential (strain)
energy, Umax (Ventsel and Krauthammer, 2001).
Let’s consider an elastic circular plate undergoing free vibrations as a system
with one degree of freedom, where the motion of the generalized SDOF coin-
cides with the motion of the central point in the plate. Since only free flexural
vibrations are of interest, the Rayleigh’s principle can be written as:

Umax = Kmax (3.22)

It should be noticed that this principle is essentially a restatement of the con-
servation of energy principle.
The strain energy of the slab, which was previously worked out, is given by
equation 2.83, and it is equal to:

U =
1

2
D

∫ 2π

0

∫ R

0

[(
∂2w

∂r2
+

1

r

∂w

∂r

)2

− 2(1− ν)

(
∂2w

∂r2
1

r

∂w

∂r

)]
r dθ dr

The kinetic energy of the plate is:

K =
1

2

∫ 2π

0

∫ R

0

ρh

(
∂w(r, t)

∂t

)2

r dθ dr (3.23)

Hypothesizing that the plate is undergoing harmonic vibrations, its middle plane
can be approximated by:

w(r, t) = ψ(r) sin(ωt) (3.24)

where:

• ψ(r) is a continuous function that approximately represents the shape
of the plate’s deflected middle plane and satisfies at least the kinematic
boundary conditions;

• ω is the unknown natural frequency of the plate related to the assumed
shape function.

Substituting expression 3.24 into equation 3.23 for the kinetic energy, one can
obtain:

K =
ω2

2
cos2(ωt)

∫ 2π

0

∫ R

0

ρhψ2(r) r dθ dr (3.25)

It is apparent that the kinetic energy expression reaches a maximum when
cos(ωt) = 1. Therefore:

Kmax =
ω2

2

∫ 2π

0

∫ R

0

ρhψ2(r) r dθ dr (3.26)
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The strain energy reaches its maximum when the deflection is at its maximum.
For the deflected middle surface, Umax occurs when sin(ωt) = 1. It can be easily
shown that under this condition the maximum strain energy of the vibrating
plate is identical to that derived for the static case (Ventsel and Krauthammer,
2001).
Substituting the expressions for the maximum values of the strain and kinetic
energies, respectively, into equation 3.22, one can get the fundamental frequency
of the system:

ω2 =
2Umax∫ 2π

0

∫ R
0
ρhψ2(r) r dθ dr

=
k∗e
m∗e

(3.27)

It is apparent that this result yields the same expressions for the generalized
mass and the generalized stiffness that were worked out in the previous section
by using the principle of virtual displacements.

It should be pointed out that the accuracy of determining the natural fre-
quencies depends on the successful selection of the expression for ψ(r) (Ventsel
and Krauthammer, 2001). As was previously mentioned, usually the function
ψ(r) is chosen to be proportional to a static deflection of a plate with the
same boundary conditions as for the plate of interest under a uniformly dis-
tributed surface load p0. In other words, the plate surface corresponding to the
fundamental mode is identical to that deflected by a uniform distributed load
in the static case (Morison, 2006; Ventsel and Krauthammer, 2001). The ap-
proximate fundamental frequency computed from Rayleigh’s principle is always
higher than the exact value, since one arbitrarily stiffens the plate by assuming
a modal shape, therefore increasing its frequency (Ventsel and Krauthammer,
2001).
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3.3 Elastoplastic idealization

In the previous section it was shown how it is possible to reduce the plate system
to a generalized SDOF system with an elastic perfectly plastic behaviour by us-
ing the elastic and plastic shape functions (which are different) respectively for
each stage. Elastic and plastic parameters of the plate are reduced in such a way
that the generalized SDOF could represent equivalently the overall behaviour
of the system. In any case, in order to achieve the complete description of the
elastoplastic behaviour, it is necessary to define the following parameters: k∗e
(the generalized elastic stiffness), wel (the displacement at the elastic limit), Fsu
(the collapse load). All these parameters are illustrated in figure 3.1, in which
the solid line represents the resistance function for a real elastoplastic system,
whilst the dashed line represents the resistance function for an idealized elastic-
perfectly plastic SDOF system.
The value of k∗e is found in a relatively simple way by using the elastic shape
function and the general elastic parameters of the plate; for the other parameters
(Fsu, wel) it is necessary to study the plastic behaviour of the plate, hypothe-
sizing the right collapse mechanism by using the upper bound approach of limit
analysis theory.

The limit analysis tries to find a limit load, or collapse load, for which the
plastic deformation can increase without limit under a constant limit load (Save
et al., 1997; Chen and Han, 1988; Young and Budynas, 2001). The upper-
bound principle states that if there is potential failure mechanism for which the
dissipation rate is smaller than the external power supplied by the given loads,
the structure will collapse under such loads (Jirasek and Bazant, 2001). Due to
the fact that there are many possible failure mechanisms, the problem is how
to find out which is the right one by using the upper bound principle. Actually,
the right collapse load will be the minimum load able to produce the collapse.
In the case of slabs, the system is a bidimensional structure where yield lines
will create progressively until the collapse. The internal energy is represented
by the dissipation of plastic energy performed by the yield lines. Selecting the
right collapse mechanism is not simple, taking into account that there are many
collapse mechanisms and that, at the same time, they depend on boundary
conditions, position of the loads, slab geometry and material characteristics. In
chapter 5 these concepts will be applied and developed in detail for some specific
cases of interest.

From the upper bound theory, using the most probable collapse mechanism,
it is feasible to obtain the maximum load resistance or collapse load Fsu. This
load represents the external charge for which the plate develops the minimum
of yield lines necessary to reach an imminent collapse.

Now, assuming that a SDOF system behaves like an elastic-perfectly plastic
material, it is easy to define the value of wel, which is equal to wel = Fsu/k

∗
e .

Considering an elastic-perfectly plastic behaviour of a generalized SDOF has
many advantages in terms of simplicity, calculation efficiency, computational
performance and great usefulness in the solution of further applications like
energy evaluation or pressure-impulse diagrams generation. An elastic-perfectly
plastic system assumes that the total yield lines that lead to the collapse are
developed at the same time (at the peak, when the system changes its stage
from the elastic to the plastic one), which is not exactly real, because the yield
lines in a slab are creating progressively with the increment of the load until



34 CHAPTER 3. DYNAMIC ANALYSIS OF CIRCULAR PLATES

wel

Fsu

Fs

w(r = 0, t)

1

*ke

wu

Figure 3.1: Resistance function for a SDOF system.

the system reaches the maximum resistance force and thereby the collapse. For
instance, in the case of a circular clamped slab with a radial charge, the circular
yield line at the border will appear first, and then they will be followed by the
formation of the radial lines until the collapse. This losing of stiffness is also
progressive, describing a non-linear elastoplastic behaviour, as shown in figure
3.1. However, the assumption of elastic-perfectly plastic behaviour is a good
approximation, enough accurate for preliminary assessment purposes. Dealing
with a more complex type of elastoplasticity is very complex and it does not
represent a considerable gain of accuracy for our applications.

Figure 3.2 illustrates the SDOF idealization assumed for the circular slabs
treated in this work, in both elastic and plastic stage. The mass of the equivalent
system is assumed to be concentrated at the center of the slab, and the degree of
freedom characterizing the system is represented by the corresponding midspan
displacement, which is the maximum one over the slab area and it is time-
varying, i.e. wmax = w(r = 0, t). In the elastic stage the generalized stiffness of
the SDOF system k∗e is represented by a spring, whilst in the plastic stage the
stiffness is set equal to zero, and in the sketch this is represented by a slider.

The assessment of the damage threshold w̃max is more complicated since
it depends on the plastic properties of the plate’s material, thus a suitable
damage criterion should be chosen. This procedure consists in the definition
of a maximum crack opening displacement in the middle of the plate, which
corresponds to the maximum deformed zone. The complete illustration of the
w̃max assessment procedure is developed in chapter 5 for some type of materials
(R/C, FRC).

After the definition of the already mentioned parameters, it is possible to
describe the behaviour of the system for the application of a monotonic load,
but there is still the possibility of an eventual reversion of the load. Actually an
unloading and reloading process shows the so-called Bauschinger effect (Chen
and Han, 1988), namely the correspondence between stress and strain in a plas-
tically deformed system is not one-to-one. This means that the strain is not only
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function of the stress, but depends on the previous loading history. This con-
sideration is very important when the structure is subjected to dynamic loads,
because the dynamic response for every interval of time has to be referred to the
last step, taking into account the loading history. For this purpose, it is conve-
nient to introduce the incremental displacement and the incremental resistance
force. Figure 3.3 focuses on this issue. When ẇ > 0 and Ḟs > 0 (which rep-
resent a positive increment in the displacement and in the resistance function,
respectively) the elastic loading branch is followed; when ẇ < 0 and Ḟs < 0
the elastic unloading branch is followed; when Ḟs = 0 the plastic plateau has
been reached. Obviously, when an elastic branch is followed, Ḟs is proportional
to ẇ through k∗e . As last remark, please note that the inversion of the loading
corresponds to the peaks in the chosen dynamic response parameter, e.g. the
displacement.



36 CHAPTER 3. DYNAMIC ANALYSIS OF CIRCULAR PLATES

*

wmax

ke

*me

*pe

wmax

Fsu

*mp

*pp

(a)

(b)

w(r)

r

wmax

r

w(r)
wmax

Figure 3.2: Single degree of freedom idealization: (a) elastic stage; (b) plastic
stage.
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Figure 3.3: Resistance function for loading/unloading cycles.
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3.4 Numerical evaluation of the dynamic response

3.4.1 Pulse shapes

In this section some pulse shapes are proposed for the dynamic analysis. These
shapes represent an approximation of the real load-time excitation in a blasting
event that was discussed in the first chapter. Generally the loading history
shows a growing path, reaching the maximum shock pressure in a very short
time; sometimes this growing path is so small that can be neglected. Then a
decay path, which is usually much longer than the growing path, shows how the
blasting shock is dissipated until a time td.
In the present work several pulse shapes will be assumed, as illustrated in figure
3.4. A rectangular shape function was also taken into account in order to analyse
a very intensive shock or an idealized permanent load.

It is convenient to anticipate here some calculations that will turn to be useful
in the development of the pressure-impulse diagrams. Once a pulse shape is
selected, the numerical code computes the time duration of the pulse associated
to the chosen shape and to the values of its peak pressure pmax and specific
impulse i. The time duration of the load is necessary to perform the dynamic
analysis by means of the generalized SDOF as will be discussed in the next
sections.
The expressions to obtain the time duration of the load td for a certain pulse
shape from a generic pair of (i; pmax) values are listed in the following, along
with the analytical expressions of the pulses.

(a) General triangular pulse. The analytical expression of the pressure-
time curve for this case is:

p(t) =


pmax

t

tr
if 0 ≤ t ≤ tr,

pmax

(
1− t− tr

td − tr

)
if tr < t ≤ td,

0 if t > td.

(3.28)

where tr is the rise time to reach the peak load pmax.
In this case the time duration of the load is obviously given by:

td =
2i

pmax
(3.29)

(b) Right-angle triangular pulse. The analytical expression of the pressure-
time curve for this case is:

p(t) =

pmax
(

1− t

td

)
if 0 ≤ t ≤ td,

0 if t > td.
(3.30)

In this case the time duration of the load is obviously given by:

td =
2i

pmax
(3.31)
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(c) Rectangular pulse. The analytical expression of the pressure-time curve
for this case is:

p(t) =

{
pmax if 0 ≤ t ≤ td,
0 if t > td.

(3.32)

In this case the time duration of the load is obviously given by:

td =
i

pmax
(3.33)

(d) Half sine pulse. The analytical expression of the pressure-time curve for
this case is:

p(t) =

pmax sin

(
π
t

td

)
if 0 ≤ t ≤ td,

0 if t > td.
(3.34)

The general expression to compute the specific impulse is:

i =

∫ td

0

p(t)dt (3.35)

Hence:

i =

∫ td

0

pmax sin

(
π
t

td

)
dt =

2pmax
π

td (3.36)

Therefore, for a generic point of coordinates (i; pmax) in the pressure-impulse
plane, the time duration of the load in the case of a half-sine pulse shape can
be determined as follows:

td =
π i

2pmax
(3.37)

(e) Exponential pulse. The analytical expression of the pressure-time curve
for this case is:

p(t) =

pmax
eλ(td−t)

eλ td − 1
if 0 ≤ t ≤ td,

0 if t > td.
(3.38)

The specific impulse is given by:

i =

∫ td

0

p(t)dt = pmax

∫ td

0

eλ(td−t)

eλ td − 1
dt (3.39)

Finally:

i =

(
1

λ
− td
eλ td − 1

)
pmax (3.40)

For a generic point of coordinates (i; pmax) in the p-i plane, equation 3.40 can
be solved numerically to get the time duration of the load. It should be pointed
out that the value of the exponential coefficient λ plays a very important role in
the definition of the shape of the exponential pulse. In particular, if λ→ 0, one
gets the right-angle triangular pulse; if λ << 0, the pulse shape is convex, and
at the limit λ→ −∞ it coincides with the rectangular pulse; finally, if λ >> 0,
the pulse shape is concave, and at the limit λ→ +∞ it becomes an ideal pulse.
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Figure 3.4: The different pulse shapes that were used in the present work: (a)
general triangular pulse, with rise time tr to reach the peak load pmax; (b) right-
angle triangular pulse; (c) rectangular pulse; (d) half-sine pulse; (e) exponential
pulse, with exponential coefficient λ.
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3.4.2 Average acceleration method

In order to perform the dynamic analysis, a numerical approach will be used,
which goes under the name of average acceleration method. The basic assump-
tion under this procedure is that the value of the acceleration remains constant
all over the time-step of interest. The numerical nature of this method allows to
take into account also for complex loading functions and non-linear behaviours.
In the following, a detailed description of the procedure will be carried out,
along with the formulae implemented in the numerical code.

Initial time step calculations. Under the hypothesis that the loading his-
tory starts being the system on the elastic branch, the initial values of the
generalized parameters are set equal to the elastic ones:

m∗0 = m∗e k∗0 = k∗e L∗0 = L∗e (3.41)

Moreover, the initial values of displacement and velocity are set equal to zero:

z0 = 0 v0 = 0 (3.42)

The evaluation of p0 (the initial value of the load function) is carried out ac-
cording to the selected load shape. In the case of general triangular pulse and
half sine pulse, the value of p0 will be set equal to zero, while in the other three
cases, it will be equal to pmax L

∗
0.

The initial value of the resistance function is given by:

Fs,0 = k∗0 z0 (3.43)

With these parameters computed, it is now possible to derive the acceleration
as follows:

a0 =
p∗0 − Fs,0
m∗0

(3.44)

i-th time step. It is useful to define a vector called zvel,change which takes
into account the values of displacement for which a velocity sign inversion oc-
curs. Analogously, a vector called tvel,change is defined, which takes into account
the values of time for which a velocity sign inversion occurs. It has also been
introduced a counter for the velocity sign inversion points. This was done in
order to obtain a certain number of peaks (npeaks) in the dynamic response of
the system before the dynamic analysis stops; i.e., the analysis will continue
until a certain number of peaks (defined by the user) will be computed.

Evaluation of p∗i+1 according to the selected load shape. The evalua-
tion of the load function at the i+ 1-th time-step must be carried out according
to the selected pulse shape. In the following, the formulae used in the numer-
ical procedure are outlined in detail. These formulae were obtained simply by
performing a discretization process of the corresponding analytical expressions
presented in the preceding section about pulse shapes.
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(a) General triangular pulse.

p∗i+1 =


L∗i pmax

i4t
tr

if i4t ≤ tr,

L∗i pmax

(
1− 4t− tr

td − tr

)
if i4t ≤ td,

0 if i4t > td.

(3.45)

where tr is the rise time to reach the peak load pmax.

(b) Right-angle triangular pulse.

p∗i+1 =

L∗i pmax
(

1− i4t
td

)
if i4t ≤ td,

0 if i4t > td.
(3.46)

(c) Rectangular pulse.

p∗i+1 =

{
L∗i pmax if i4t ≤ td,
0 if i4t > td.

(3.47)

(d) Half sine pulse.

p∗i+1 =

L∗i pmax sin

(
π
i4t
td

)
if i4t ≤ td,

0 if i4t > td.
(3.48)

(e) Exponential pulse.

p∗i+1 =

L∗i pmax
eλ(td−i4t)

eλ td − 1
if i4t ≤ td,

0 if i4t > td.
(3.49)

Other quantities at the i-th time step. In order to compute the increment
in the displacement function 4zi and the increment in the velocity 4vi at the
i-th time-step, it is convenient to define the quantities 4p̃i and k̃∗i as follows:

4p̃i = p∗i+1 − p∗i +m∗i

(
4
vi
4t

+ 2ai

)
(3.50)

k̃∗i = k∗i +
4

4t2
m∗i (3.51)

Finally the increment in displacement and in velocity at the i-th time-step are
given by:

4zi =
4p̃i
k̃∗i

(3.52)

4vi =
2

4t
4zi − 2vi (3.53)
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Evaluation of displacement and velocity at the subsequent time step.
With the increments previously computed, it is now possible to work out the
values of displacement and velocity at the i+ 1-th time-step:

zi+1 = zi +4zi (3.54)

vi+1 = vi +4vi (3.55)

Generalized parameters evaluation. For the calculation of the transfor-
mation coefficients, it is necessary to know whether the system is following the
elastic or the plastic branch, and this is easily achieved by studying the sign of
the velocity in two successive time-steps.
This issue is clearly illustrated in figure 3.5, which can be viewed as the numer-
ical counterpart of figure 3.3. In this figure, the squares represent the points in
which the ultimate resistance Fsu force is reached. The circular crowns repre-
sent the points in which an inversion of the velocity sign occurs. If the velocity
sign reverses, the path switches from the loading to the unloading branch, or
vice-versa. If then the reloading/unloading branch is followed, the generalized
properties of the system (mass, stiffness and load) to be used in the subsequent
computations are the elastic ones, until the limit resistance Fsu is reached again.
The mathematical form of the issue just outlined is given in the following. If
the sign of the velocity does not change between a certain time step and the
subsequent one, namely:

vi
vi+1

≥ 0 (3.56)

then
Fs,i+1 = Fs,i + k∗i 4zi (3.57)

If the value of Fi+1 given by equation 3.57 is greater than the ultimate resistance
force Fsu, then the system has reached the plastic stage. In this case the value
of Fi+1 is brought back by the numerical code to the ultimate resistance Fsu
and the generalized characteristics of the system at the i + 1-th time step are
set equal to the plastic ones. Otherwise, if the elastic branch is still followed,
Fi+1 is computed as:

Fs,i+1 = Fs,i + k∗e 4zi (3.58)

and the generalized characteristics of the system at the i + 1-th time step are
set equal to the plastic ones.

Evaluation of the acceleration at the subsequent time step. The final
step of the average acceleration procedure provides the value of the acceleration
at the i+ 1-th time-step:

ai+1 =
1

mi

(
p∗i+1 − Fs,i+1

)
(3.59)

Once this computation is performed, the procedure just outlined is iterated until
the desired number of peaks in the response parameter is obtained.
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Figure 3.5: Resistance function for loading/unloading cycles: numerical devel-
opment.
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3.5 Flow charts of the MATLAB R© codes

In order to illustrate the procedures which were implemented as numerical codes
using the MATLAB R© program (Magrab et al., 2010), many flow charts were
created, which present in a scheme form all the algorithms that were written
for the dynamic analysis and, later, for the pressure-impulse diagrams develop-
ment. The notation in which the flowcharts herein presented were developed
is based upon the Unified Modelling Language (UML) contained in the book
UML Distilled Third Edition (Fowler, 2003), amongst the other authors.
The flowcharts representing the dynamic analysis main code along with its
subfunctions are given in the following pages. These can be prove useful to
understand and manage the numerical codes that were developed within the
framework of this thesis.
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Figure 3.6: Flow chart of the dynamic analysis main code.
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Figure 3.7: Flow chart of the average acceleration method subfunction.
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equal to the elastic ones

[v(i+1) and v(i)
have the same sign] [else]

[Fs(i+1)>Fsu] [else]

Fs(i+1) = Fsu

[|Fs(i+1)|>0] [else]
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coefficients at step (i+1)
equal to the plastic ones

Set the transformation
coefficients at step (i+1)
equal to the elastic ones

Fs(i+1), k(i+1), m(i+1),
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~

Fs(i+1) = -Fsu
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Fsu

Fs(i+1)

~

Figure 3.8: Flow chart of the subfunction to compute Fs and the transformation
coefficients at the i+ 1-th time-step.



Chapter 4

Pressure-impulse diagrams

4.1 Generalities

A pressure-impulse diagram (p-i diagram) is a design tool that allows a simplified
assessment of the response of a structural component subjected to a specified
load (e.g., blast load). When the designer defines a maximum value of a certain
response parameter, the diagram indicates the combinations of pressure and
impulse that will cause the same damage level in the structural element con-
sidered (Krauthammer, 2008). Pressure-impulse diagrams were first developed
during the Second World War in the study of buildings damaged by bombs in
the United Kingdom, and then these p-i diagrams have been applied to predict
structural damage as well as human injuries induced by a blast explosion (Shi
et al., 2008).
Usually p-i diagrams for structural elements have been derived from the analysis
of SDOF systems, assuming a flexural mode of response without any considera-
tion of damage due to shear failure. Moreover, analytical p-i curves were often
developed hypothesizing idealized perfectly elastic or elastic-perfectly plastic
materials (Krauthammer et al., 2008).
Many authors have been using the SDOF approach (Fischer and Hring, 2009;
Li and Meng, 2002a; Morison, 2006), while others have tried to introduce some
improvements, using both analytical and numerical procedures. Campidelli and
Viola (2007) proposed an analytical method to analyse SDOF models, whilst
Fallah and Louca (2007) studied the elastic-plastic-hardening and softening of
SDOF system subjected to blast loading, and other constitutive models were
considered by Ma et al. (2007). Furthermore, Park and Krauthammer (2009)
developed a two-degree-of-freedom model for roof frame under airblast loading,
and many more complex method were introduced, either by using numerical
simulation (Zhou et al., 2008) or by assuming different failure modes (Ngo and
Mendis, 2009). Scherbatiuk et al. (2008) developed p-i diagrams for a tempo-
rary soil wall using an analytical rigid-body rotation model, whilst Gong et al.
(2009) carried out a validation study on numerical simulation of RC response to
close-in blast with a fully coupled model. Concerns in blast-resistant design by
means of pressure-impulse diagrams have also been tackled by Alaoui and Os-
wald (2007) considering precast and prestressed structures; El-Dakhakhni et al.
(2009) focused on the capacity assessment of RC columns subjected to blast;
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Lan et al. (2005) and Li et al. (2009) studied composite structural elements
subjected to explosive loadings, whilst Lan et al. (2005) considered fibre rein-
forced plastic slabs tackling the problem of the retrofitting of blast damaged
structures.
Figure 4.1 shows a sketch of a generic p-i diagram. The two asymptotes de-
fine limiting values for each parameter. Loads with very short duration with
respect to structure’s natural frequency are called impulsive loading and in this
case the structure is sensitive only to the related impulse and not to the peak
pressure (Shi et al., 2008). Therefore the impulsive asymptote represents the
minimum impulse required to reach a certain damage level, and it is approached
asymptotically by the p-i curve at high pressures. When the load duration is
longer than the structure’s natural frequency, a so-called quasi static loading
occurs, meaning that the response parameter becomes insensitive to impulse
(i.e., to the dynamic nature of the loading) but very sensitive to peak pressure
(Shi et al., 2008). Thus the quasi-static asymptote defines the minimum peak
pressure required to reach a specified damage level.
In recent years a great progress has been made in developing p-i diagrams of
structural members. It appeared that there is a noticeable loading shape in-
fluence on the p-i curve when both pressure and impulse are important for the
dynamic structural response (Shi et al., 2008), and this occurs in the dynamic
loading regime, as can be seen in figure 4.1. Moreover, the influence of the
pulse shape effects have been analysed (Florek and Benaroya, 2005), also with
particular reference to pressure-impulse diagrams (Li and Meng, 2002b).
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Figure 4.1: A scheme of a typical pressure-impulse diagram.
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4.2 Background

In the design of protective structures, non-periodic or non-harmonic loads that
act for a finite duration are often encountered. The transient loads are com-
monly generated in blast or impact events and these loads are usually defined
in terms of peak load (pressure or force) and impulse (instead of duration)
(Krauthammer, 2008).
The impulse i of the load is defined as the area enclosed by the pressure-time
curve (termed generically by p(t)), as illustrated in figure 4.2, and its magnitude
is given by the following expression:

i =

∫ td

0

p(t)dt (4.1)

where p(t) is the load-time curve and td is the time duration of the load pulse.
If p(t) is expressed in term of pressure, specific impulse becomes an appropriate
term.

t

p(t)

td

i

Figure 4.2: The impulse is defined as the area under the pressure-time curve.

When dealing with the preliminary assessment of structural components,
a designer is mainly interested in the maximum responses (displacement and
stresses), rather than in a detailed knowledge of the response histories (Krautham-
mer, 2008). Response spectra are plots of the maximum peak response versus
the ratio between the load duration and the natural period of the system, and
usually they are are used to simplify the design of a dynamic system for a given
loading.
By defining different sets of axes, the same response spectra for the given dy-
namic system can be represented in different ways (Krauthammer et al., 2008).
The p-i diagram is one of this alternative representations and it is widely used for
structural component damage assessment. By changing the axes one can obtain
several forms of shock spectra which may look different; however, all of them
describe the relationship between the maximum value of a response parameter
and a dynamic characteristic of the system under consideration (Krauthammer,
2008).
The British performed the first applications of p-i diagrams using empirically
derived diagrams for brick houses which were bombed during the Second World
War in order to determine damage criteria for other houses, small office build-
ings, and light framed industrial buildings (Krauthammer, 2008). Currently, the
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results of such investigations are used as the bases for explosive safe stand-off
criteria in the United Kingdom (Baker et al., 1983). Pressure-impulse diagrams
were also developed to assess human responses to blast loading and to establish
damage criteria to specific organs (eardrum, lungs, etc.) of the human body.
This is possible because the body responds to blast loading as a complex me-
chanical system (Baker et al., 1983).
Pressure-impulse diagrams have been used widely to perform preliminary dam-
age assessments of protective structures subjected to blast loading. It should
be noticed that the p-i diagram should be more correctly referred to as a
load-impulse diagram, because the ordinate can be defined either in terms of
pressure or force; in the latter case, the force-impulse term becomes appro-
priate (Krauthammer et al., 2008). Traditionally, in specific applications for
blast-loaded structures, these load-impulse diagrams appear often with pressure
(rather than force) as the ordinate because usually the (blast) load is defined in
term of pressure distribution (Krauthammer, 2008).
Pressure-impulse diagrams are also becoming widely used in the homeland se-
curity and civil protection fields, and more generally in all those fields in which
risk analyses are involved. Asprone et al. (2010) proposed a probabilistic model
for the risk assessment of structures in seismic zones subjected to blast; Low
and Hao (2001) performed reliability analysis of reinforced concrete slabs under
explosive loading; Stewart and Netherton (2008) assessed the risk of glazing
subjected to blast loads, whilst Talaslidis et al. (2004) tackled the risk analysis
of industrial structures under extreme transient loads. Among these studies,
also stochastic techniques were proposed (Wang and Tan, 1995), and in some
of them also the effects related to the shear force were taken into account (Low
and Hao, 2002).

4.3 Characteristics of p-i diagrams

A p-i diagram emphasizes the combination of peak load and impulse (or equiv-
alent dimensionless quantity) for a given response (or damage level) (Baker
et al., 1983). A p-i diagram, also called an iso-damage curve, allows the easy
assessment of the response of a structural element to a specified load. With a
maximum displacement or damage level defined, a p-i curve indicates the com-
binations of load or pressure and impulse that will cause the specified failure or
damage level (Krauthammer, 2008). Actually the threshold curve divides the p-
i diagram into two distinct regions. Combinations of pressure and impulse that
fall to the left and below the curve will not induce failure, while those falling
to the right and above the graph will produce damage exceeding the allowable
limit (i.e., the selected damage threshold). It is well known from structural dy-
namics that a strong relationship exists between the natural frequency (which
directly influences the response time) of a structural element and the duration
of the forcing or load function (Biggs, 1964; Clough and Penzien, 1993). This
relationship is normally categorized into three regimes: impulsive, quasi-static,
and dynamic (Baker et al., 1983). With respect to the response spectrum, the
p-i representation better allows to tell the difference between the impulsive and
quasi-static domains (Krauthammer et al., 2008). These domains will be dis-
cussed in more detail in the following section, since they are important in the
development of p-i diagrams by means of the energetic approach.
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4.4 Loading regimes

In the impulsive loading regime, the load duration is short relative to the re-
sponse of the system (which is influenced by the system natural frequency).
Actually, the load is applied to the structure and removed before the structure
can undergo any significant deformation, as shown in figure 4.3.a. Therefore the
maximum response (reached at time tm) can be assumed to be independent of
the load time history, meaning that the maximum response is mainly affected
by the impulse.
For the quasi-static regime, the loading duration is significantly longer than the
response time. The load dissipates very little before the maximum deformation
or resistance is achieved at time tm (figure 4.3.b). Unlike the impulsive regime,
the response in the quasi-static regime depends only upon the peak load and
structural stiffness. However, as with the impulsive regime, the maximum re-
sponse is not affected by the loading history.
A third transition regime, known as the dynamic regime, exists between the
impulsive and quasi-static regions. In this domain, the loading duration and
the time to reach the maximum response of the system are approximately the
same or of the same magnitude, as shown in figure 4.3.c. The response analysis
in this loading regime is more complex and it is significantly influenced by the
load history.

force

td
time

force

td
time

tm

tm

force

td
time

tm

resistance history

load function

(a)

(b) (c)

Figure 4.3: Typical response domains: (a) impulsive; (b) quasi-static and (c)
dynamic regimes.
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4.5 Asymptotes: an energetic approach

A widely used approach for obtaining the asymptotes is the energy balance
method (Krauthammer, 2008). This approach, based on the principle of conser-
vation of mechanical energy, is convenient to apply because two distinct energy
formulations always exist that separate the impulsive loading regime from the
quasi-static loading regime.
To obtain the impulsive asymptote, it can be assumed that due to inertia effects
the initial total energy imparted to the system is in the form of kinetic energy
only (Krauthammer, 2008). Equating this to the total strain energy stored in
the system at its final state (maximum response), one obtains an expression for
the impulsive asymptote:

K.E. = S.E. (4.2)

where K.E. is the kinetic energy of the system at time zero, S.E. is the strain
energy of the system at maximum displacement.
For the quasi-static loading regime, the load can be assumed to be constant
before the maximum deformation is achieved. By equating the work done by
load to the total strain energy gained by the system, the expression for the
quasi-static asymptote is obtained (Krauthammer et al., 2008):

W.E. = S.E. (4.3)

where W.E. is the maximum work done by the load to displace the system from
rest to the maximum displacement.
The formulae related to circular plates and in particular to the cases under
study will be worked out in chapter 5.
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4.6 Pressure-impulse diagram development al-
gorithm

Pressure-impulse diagrams can be worked out numerically by generating a suf-
ficient number of computed points to allow curve fitting (Krauthammer, 2008).
Each point represents the result from a single dynamic analysis and indicates
that the structure has reached a specific response (usually a displacement) rel-
ative to a certain combination of pressure and impulse. Since running all pos-
sible pressure and impulse combinations is computationally very expensive, a
search algorithm must be employed to locate the threshold points that define the
transition from safe to damaged states. Unlike analytical solutions, numerical
approaches allow complex non-linear resistance functions and complex loading
functions to be used (Krauthammer et al., 2008). Furthermore, the numerical
approach can describe the behaviour of the p-i curve in the dynamic response
domain accurately (Krauthammer, 2008).
Blasko et al. (2004) used a polar coordinate system and the bisection method
to obtain p-i diagrams. The numerical procedure starts with locating a pivot
point of coordinates (i0; p0) in the failure zone, which is set as the origin of the
polar coordinate system. Iterations using the bisection method are carried out
to find the threshold point for each angle φi. This method is smart because,
by exploiting polar coordinates instead of rectangular coordinates, allows to use
only a single search direction.
It should be noticed that the derivation of the p-i curve, which is performed in a
numerical way, is independent from the computation of the asymptotes, which is
done, on the contrary, in an analytical way by means of the energetic approach.
However, the asymptotes can give rise to a convenient starting point for the
numerical procedure. In fact, although the calculation of the asymptotes is not
necessary for the numerical method to work, one can automate the procedure for
selecting the location of the pivot point by utilizing the asymptotes (Krautham-
mer et al., 2008). The best choice for locating the pivot point is to consider it
as an homothetical dilation of the point of intersection between the two asymp-
totes, since the points along this line are expected to be equally distanced from
both the asymptotes (see figure 4.4). A randomly selected point might be close
to one asymptote or too far from the threshold curve, reducing the resolution of
the results. This approach can be applied effectively to any structural system
for which a resistance function can be obtained (Krauthammer et al., 2008).
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Figure 4.4: Location of the pivot point.
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Figure 4.5: Scheme of the p-i diagram development algorithm.
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4.6.1 Outline of the procedure

In order to generate the p-i curve, for every direction φi arising from the pivot
point (i0; p0) the following procedure is carried out:

• the algorithm moves downward along the direction φi with a chosen spa-
tial step ∆s evaluating the sign of the function f = (wmax − w̃max) in
each point of the discretization. In this expression, wmax represents the
maximum displacement in the time history obtained from a dynamic anal-
ysis performed under the combination of pressure and impulse given by
the coordinates of the current point; while w̃max represent the damage
threshold computed according to the criterion that will be discussed in
the following chapter. This searching procedure stops when the sign of f
becomes negative, meaning that an interval suitable for the application of
the bisection method is found, because the damage threshold falls inside
such interval (see figures 4.5 and 4.6);

• from now on, the bisection method is applied and iterated until the desired
level of precision is achieved according to a certain convergence criterion
(see figure 4.7).

For the j-th iteration, the point M = (iM ; pM ) represented in figure 4.7 (which
is the middle point of the segment AB) is computed, and a dynamic analysis is
performed in order to find wmax,M . Therefore one can compute fM = (wmax,M−
w̃max). For the subsequent iteration, the algorithm must choose the interval
which repeats the same sign configuration as the previous one, i.e., if the value
given by the product fM · fA has a negative sign, then one must take the MA
interval, otherwise the MB interval must be chosen. Then the same procedure
is iterated until the desired convergence is reached.
A suitable convergence criterion may be based on the evaluation of the following
discrepancy at every j-th iteration:

εj =
wmax,j − w̃max

w̃max
(4.4)

with εj being the error of convergence at the j-th iteration and wmax,j the
maximum displacement provided by the dynamic analysis performed at the j-
th iteration. When εj is minor than a certain value assumed as the precision of
the numerical computation (e.g., when < 1%) the desired level of convergence
is reached and the iterative procedure stops.
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While performing the numerical simulations during this work, it was encoun-
tered a problem in the graphical resolution of the p-i curves. In fact, too many
points appeared to interpolate the upper part of the curve, while the resolution
of the lower part, mainly in correspondence with the dynamic loading regime,
looked very poor.
In order to address this issue, it was decided to compute two different sectors of
the diagram in a separate way: the upper left sector, in which there will be the
part of the p-i curve closest to the the impulsive asymptote, and the lower right
sector, in which there will be the part of the p-i curve closest to the quasi-static
asymptote. In this way, the user may choose to compute the first sector with a
lower number of points, and the second sector with a higher number of points,
or vice-versa, according to the level of resolution desired. This gives rise to
the possibility to speed up the computational procedure reducing the numerical
effort, and it has proven to be very efficient.
In order to automate the procedure, the angle which separates the two sectors
(called α) was chosen to be equal to the one obtained by joining the pivot point
and the midpoint of the segment lying on the impulsive asymptote which has as
endpoints the point of intersection between the asymptotes and the point with
the same ordinate as the pivot point, as illustrated in figure 4.8.
The mathematical form of angle α is the following:

α = arctan

p0 − p0 − q.s.a.
2

i0 − i.a.

 (4.5)

= arctan

(
q.s.a.+ p0
2(i0 − i.a.)

)
(4.6)

where i.a. is the level of impulse at which the impulsive asymptote is located,
while q.s.a. is the level of pressure at which the quasi-static asymptote is located.
Recalling that the pivot point (i0; p0) is given by the homothetic transformation
of the point of intersection between the asymptotes (i.a.; q.s.a.) through the
expansion factor k (which is > 1), expression 4.6 can be finally rewritten as:

α = arctan

(
q.s.a. (1 + k)

2 i.a. (k − 1)

)
(4.7)

It should be noticed that the p-i diagrams plotted in this work have dimensional
axes, while usually p-i diagrams performed in other works are plotted with non-
dimensional axes in order to obtain comparable scales. Plotting dimensional
p-i diagrams has its advantage, because the user can apply these diagrams in
a direct way, just placing a point representing the desired conditions of pres-
sure and impulse inside the p-i diagram. However, since the ratio between the
vertical and the horizontal axis is very big, traditional algorithms cannot trace
the complete curve. Therefore this work proposed a modification of the tradi-
tional algorithms in order to achieve a complete and well defined curve. This
improvement makes the results more useful in practice.
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4.7 Flow charts of the MATLAB R© code

In these pages the schematic flow charts of the numerical codes developed to ob-
tain the p-i curves will be presented. The notation in which the flowcharts herein
reported were developed is based upon the Unified Modelling Language (UML)
contained in the book UML Distilled Third Edition (Fowler, 2003), amongst the
other authors.
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Figure 4.9: Flow chart of the p-i diagram main code.
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Function call by p-i main code
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h, R, ρ, ν

Elastic stage
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Plastic stage
computation

[wmax < wel] [else]~

i.a., q.s.a.

i.a., q.s.a.

Figure 4.10: Flow chart of the asymptotes code.
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Figure 4.11: Flow chart of the p-i diagram development code.
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Figure 4.12: Flow chart of the p-i search algorithm code.
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Function call by p-i diagram code
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Figure 4.13: Flow chart of the p-i bisection method.



Chapter 5

Applications

The algorithms developed in this paper can be used for general applications of
dynamic analysis and p-i diagrams. However, there are some specific applica-
tions of interest to achieve the scope of this project. In this chapter circular
plates are considered in order to forecast the experimental results of the shock
tube test. Of course, shock tube samples should have certain geometrical char-
acteristics of thickness h and radius R and that is why the examples and the
results worked out in this chapter correspond to the shock tube plate samples.
Many kinds of material could be considered in the analysis, but just two wide
known materials were selected, reinforced concrete (RC) and fibre-reinforced
concrete (FRC). Civil engineers are very familiar with these materials and the
results will be clearer if these materials are involved instead of others like lay-
ered structure, which is left for further research.
Not only different materials are taken into account, but also different boundary
conditions, like plates simply supported or supported on grade. Thereby, the
application’s field of the work developed herein becomes wider, including a lot
of possible circumstances in terms of materials and boundary conditions.

5.1 Materials adopted

Two kinds of material will be considered in the applications which will be later
presented in this chapter: high strength concrete reinforced with traditional
steel bars and a fibre-reinforced concrete (Colombo et al., 2010).
In this section the two kinds of reinforcement will be briefly reviewed, along with
the ultimate bending moment and the damage threshold calculations which will
turn to be necessary for the subsequent applicative examples.

5.1.1 Traditional reinforcement

Ultimate bending moment resistance

The design yielding strength of steel is given by the characteristic yielding
strength divided by a safety factor equal to 1.15:

fyd =
fyk
1.15

(5.1)
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The design yielding strain of steel is given by the Hooke’s law:

εyd =
fyd
Es

(5.2)

The design ultimate strain of steel is conventionally set equal to:

εsd = 1% (5.3)

The design ultimate strength of concrete is given by the characteristic cylindrical
compressive strength divided by a safety factor equal to 1.5:

fcd =
fck
1.5

(5.4)

The ultimate stress of concrete must be further reduced by means of a coefficient
which takes into account the long term load fatigue effects:

fcu = 0.85 fcd (5.5)

Even though within this work the discussion is mainly concerned about short
duration load, the coefficient for fatigue effects was taken into account because
it was thought that the plate is not designed only to resist explosive loads, but
also to carry all the actions which occur more frequently.
High strength concrete will be considered in this work, namely concrete having
a cylindrical compressive strength greater than 50 MPa. According to the Eu-
rocode 2 (VV.AA., 2004), the ultimate strain of high strength concrete is given
by:

εcu = 0.26% + 3.5%

(
fck − 90

100

)4

(5.6)

As can be seen in this formula, when fck increases, the value of εcu decreases,
meaning that the plastic plateau is reduced, thus highlighting the brittle be-
haviour of a high strength concrete.
The specific steel area per unit length is given by:

As = nrebar

(π
4
φ2
)

(5.7)

with nrebar being the number of reinforcement bars in a unit length base (b = 1
m), and φ being their diameter.
The geometrical steel ratio is denoted by ρs:

ρs =
As
b d

(5.8)

where d = h− c is the effective distance (with c being the concrete cover of the
reinforcement and h the plate thickness) and b = 1 m. The ductility ratio can
be computed as follows:

χb =
εcu

εcu + εyd
d (5.9)

In order to meet the condition of balanced rupture, which ideally represents
the best exploitation of the characteristics of both the materials, the following
requirement must be satisfied:

ρs <
0.8 fcu χb
fyd d

(5.10)
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If this condition is enforced, it is sure that the concrete has reached its ulti-
mate strength at the extreme fibre and that the steel has achieved the yielding
condition, which implies εs ≥ εyd and σs = fyd. In addition to this, also the re-
quirement of a minimum geometrical steel ratio (which is fixed in ρs,min = 0.6%
by the codes) must be satisfied. If these two conditions are met, one can com-
pute the neutral axis position as follows:

x =
fydAs

0.8 fcu b
(5.11)

Finally the ultimate bending moment resistance per unit length [F·L/L], making
reference to figure 5.1, can be computed as follows:

m0 = fydAs (d− x) + 0.8 fcu b x (0.6x) (5.12)

h

εcu

d

c

x

εs

C = 0.8 fcu x

T = fyd As

fcu

0.8 x
0.6 x

Figure 5.1: RC element undergoing a balanced rupture.

Damage threshold

The threshold displacement criterion is imposed in relation with the crack tip
opening displacement (CTOD) at midspan. Performing a triangle relation be-
tween the rotation at the border with the rotation at midspan, it is possible
to obtain the equation 5.13, which relates the crack opening with the ultimate
allowable displacement (w̃max). This geometrical relation is illustrated in figure
5.2. The geometrical relation is valid for RC and FRC, but the definition of
CTOD is taken in consideration in a different way, as it is going to be presented
along this section.
For RC the selected CTOD corresponds to the post-yielding deformation of the
steel bars when the concrete reaches its maximum compressive strength at the
extreme fibres.

The damage threshold w̃max in the case of traditional reinforcement can be
computed as:

w̃max = R
CTODu

2d
(5.13)

The corresponding crack opening CTODu is given by:

CTODu = εs lcs (5.14)

with εs being the steel deformation after yielding and lcs the characteristic
length, as defined in the following.
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The steel deformation εs after yielding is given by:

εs = εcu

(
d

x
− 1

)
(5.15)

where εs ≥ εyd, once the ductility condition stated by equation 5.10 has been
satisfied.
In presence of traditional reinforcement, the characteristic length lcs can be
computed as:

lcs = min(srm, y) (5.16)

where y is the distance between the lower reinforcement and the neutral axis in
elastic cracked phase, and srm is the average distance between cracks, computed
as follows (Eurocode 2, VV.AA. (2004); CNR-DT 204/2006):

srm = ξ

(
50 + 0.25 k1 k2

φ

ρ

)
(5.17)

where:

• ξ is an adimensional coefficient equal to 1.0;

• k1 is a coefficient equal to 0.8 for ribbed bars and equal to 1.6 for smooth
bars;

• k2 is a coefficient equal to 0.5 for simple or compound bending with y ≤ h
and equal to 1.0 for tension or compound bending with y > h;

• h is the height of the section;

• φ is the steel rebar diameter;

• ρ =
As
b y

is the geometrical ratio between the steel area As and the section

area in tension identified by the distance y.

The neutral axis position x in elastic cracked phase is given by:

x = m
As
b

(
−1 +

√
1 +

2 b h

mAs

)
(5.18)

where b = 1 m, m =
Es
Ec

, with Es being the steel Young modulus and Ec the

concrete Young modulus. For a high strength concrete, the Young modulus can
computed with the formula given in Model Code 1990 (CEB-FIP, 1993):

Eci = Ec0

[
fck + ∆f

fck0

]1/3
(5.19)

where:

• Ec0 = 21.5 MPa;

• ∆f = 8 MPa;

• fck0 = 10 MPa.
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Hence the distance y between the lower reinforcement and the neutral axis
in elastic cracked phase is simply equal to:

y = d− x (5.20)

being d the effective distance and x the neutral axis position as provided by
equation 5.18.

R R

δ

ϕ

wmax
~

CTOD,u

ϕ/2d

Figure 5.2: Damage criterion for a RC plate.
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5.1.2 FRC plate

Ultimate bending moment resistance

The model herein used was illustrated in the document Istruzioni per la Proget-
tazione, Esecuzione ed il Controllo di Strutture di Calcestruzzo Fibrorinforzato,
VV.AA. (2006) (CNR-DT 204/2006), and it was developed according to Ferrara
et al. (2004).

This model assumes that the strength in the post-cracking phase can be de-

CTOD [mm]

σ
[MPa]

fFts

fFtu

CTOD,2 = 2.5 CTOD,u

0.5 feq2 - 0.2 feq1

Figure 5.3: FRC constitutive model as proposed in CNR-DT 204/2006.

fined either on the basis of point values corresponding to given nominal values of
crack opening or on the basis of mean values feq,i computed in a given interval
of crack opening (see figure 5.3). In the case of a notched specimen, the crack
opening can be conventionally assumed to be equal to the displacement between
two points at the tip of the notch, CTOD (CNR-DT 204/2006).
In the following applications, the average nominal strengths feq,i were assumed
to be equal to: feq,1 = 5.34 MPa and feq,2 = 3.91 MPa, according to Colombo
et al. (2010).
The crack opening CTODu in the case of an FRC plate is given by:

CTODu = min(3 mm, εFtu lcs) (5.21)

In the case of a FRC plate the characteristic length lcs is equal to the slab
thickness:

lcs = h (5.22)

The ultimate tensile strain of the FRC is equal to:

εFtu = 2% (5.23)

The residual characteristic tensile strength at serviceability limit state is:

fFtsk = 0.45 feq1 (5.24)

The ultimate characteristic tensile strength of the FRC is:

fFtuk = fFtsk −
CTODu

CTOD2
(fFtsk − 0.5 feq2 + 0.2 feq1) (5.25)
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with CTOD2 = 2.5 mm.
The design ultimate tensile strength is obtained as a reduction of the character-
istic value by means of a safety factor which is equal to 1.3 for a displacement
controlled test:

fFtud =
fFtuk
1.3

(5.26)

The residual design tensile strength at serviceability limit state is given by:

fFtsd =
fFtsk
1.3

(5.27)

Finally the ultimate bending moment resistance [F·L/L], making reference to
figure 5.4, can be computed as follows:

m0 = fFtud
h2

2
+ (fFtsd − fFtud)

h2

6
(5.28)

As last remark, it should be noticed that also the value of the FRC elastic
modulus is needed, in order to calculate the flexural rigidity D. For a fibre
reinforced concrete, the value of the Young modulus is generally little influenced
by the fibres, thus it can be set equal to the one of the concrete matrix (CNR-
DT 204/2006). In the applications of this chapter it will be assumed for the
characteristic cylindrical compressive strength of the concrete matrix a value
of 75 MPa, meaning high strength concrete, thus the Young modulus will be
computed according to equation 5.19.

h

C

m0

fFts

fFtu
1

Figure 5.4: FRC reinforcement: calculation of the ultimate bending moment
m0.

Damage threshold

The same procedure, already explained for RC damage threshold, is applied in
this case, defining CTOD with equation 5.21. With reference to figure 5.5, the
damage threshold w̃max in the case of a plate made in fibre reinforced concrete
can be computed as:

w̃max = R
CTODu

2h
(5.29)

This equation originates from the same geometrical relation that was discussed
for the RC damage threshold.
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R R

δ

ϕ

wmax
~

CTOD,u

ϕ/2h

Figure 5.5: Damage criterion for a FRC plate.
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5.2 Case 1: simply supported circular slab

Consider a simply supported circular slab of radius R subjected to an axis-
symmetric load p0 distributed over the entire slab area, as illustrated in figure
5.6. The origin of the reference system is taken at the slab center, thus the
abscissa r varies from 0 to R, as can be seen in figure 5.7. The elastic deflected
shape is denoted as w(r), and wmax is the maximum displacement, which is
reached at the plate center and represents the generalized SDOF considered.

p0

h

R

Figure 5.6: Three dimensional picture representing a simply supported circular
slab, subjected to a uniformly distributed circular load acting over the entire
plate area with intensity p0.

5.2.1 Elastic theory

The solution of the governing differential equation 2.86 is given by expression
2.91. It is easy to see that the logarithm terms in this solution leads to an
infinite displacement when r = 0, so the constants C1 and C2 must be equal to
zero. Therefore the solution becomes:

w(r) = C3r
2 + C4 +

p0r
4

64D
(5.30)

The constants C3 and C4 are now worked out from the boundary conditions:

w(r = R) = 0 Mr(r = R) = 0 (5.31)

Considering C1 = 0 and C2 = 0 one can get from expression 2.92:

Mr = −D
[
2C3(1 + ν) +

p0r
2

16D
(3 + ν)

]
(5.32)
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Finally the constants are:

C3 = −p0R
2

32D

(3 + ν)

(1 + ν)
C4 =

p0R
4

64D

(5 + ν)

(1 + ν)
(5.33)

R

p0

2R

w

w(r)
O

r

wmax

Figure 5.7: A simply supported circular slab under uniform load.

Substituting the expressions of the constants into equation 5.30 one can
finally obtain the deflection equation of the simply supported circular slab under
uniform load:

w(r) =
p0(R2 − r2)

64D

(
ν + 5

ν + 1
R2 − r2

)
(5.34)

The maximum deflection wmax is found for r = 0:

wmax =
p0R

4

64D

(
ν + 5

ν + 1

)
(5.35)
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Elastic stage coefficients

In this section the transformation coefficients to obtain a SDOF system are
developed according to the variational approach that was presented in chapter
3.

Firstly, on the basis of the elastic solution just reviewed above, the shape
function is assumed as the ratio of the deflection function with respect to the
maximum displacement:

ψ(r) =
w(r)

wmax
=
R2 − r2

R4

(
ν + 1

ν + 5

)(
ν + 5

ν + 1
R2 − r2

)
(5.36)

The transformation coefficients for the elastic stage are then worked out as
was explained in chapter 3 talking about the vibration analysis of circular plates:

m∗e =

∫ 2π

0

∫ R

0

ρhψ2(r) r dθ dr (5.37)

=
πR2ρh(3ν2 + 36ν + 113)

15(ν + 5)2
(5.38)

k∗e = D

∫ 2π

0

∫ R

0

[(
∂2ψ

∂r2
+

1

r

∂ψ

∂r

)2

− 2(1− ν)

(
∂2ψ

∂r2
1

r

∂ψ

∂r

)]
r dθ dr (5.39)

=
64πD(ν + 1)(ν + 7)

3R2(ν + 5)2
(5.40)

p∗e = p(t)

∫ 2π

0

∫ R

0

ψ(r) r dθ dr (5.41)

= p(t)
πR2(ν + 7)

3(ν + 5)
(5.42)

= p(t)L∗e (5.43)

As was seen in chapter 3 (equation 3.7), it is possible to normalize the trans-
formation factors by using the corresponding total parameters (Biggs, 1964),
obtaining:

Ke
M =

m∗e
mt

(5.44)

Ke
R =

k∗e
kt

(5.45)

Ke
L =

p∗e(t)

pt(t)
(5.46)

where mt is the total mass [M]:

mt = ρhπR2 (5.47)

kt is the force per unit displacement [F/L]:

kt =
64πD

R2

(
ν + 1

ν + 5

)
(5.48)
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pt(t) is the total load [F]:
pt(t) = p(t)πR2 (5.49)

Therefore by substitution the following expressions can be obtained:

Ke
M =

3ν2 + 36ν + 113

15(ν + 5)2
(5.50)

Ke
R =

1

3

(
ν + 7

ν + 5

)
(5.51)

Ke
L =

1

3

(
ν + 7

ν + 5

)
(5.52)

As can be seen Ke
R = Ke

L. This is due to the fact that the elastic shape of
deflection was assumed to be equal to the elastic one in the static case. The re-
sistance of an element can be defined as the internal force which tends to restore
the element in its unloaded static position. If the resistance is defined in terms
of the load distribution for which the analysis is performed, as a consequence
the maximum resistance will be equal to the total load which the element could
support statically. The stiffness is equal to the total load which would cause a
unit deflection at the point where the mass, according to the idealization, has
been concentrated.
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5.2.2 Plastic mechanism and ultimate resistance

In this section the plastic shape is assumed according to the yield line theory
(Johansen, 1972) and moreover the ultimate resistance is computed according
to the upper bound (kinematic) theorem (Chen and Han, 1988). It will be
assumed a conical failure mechanism as illustrated in figure 5.9, giving rise to
the corresponding plastic shape function (shown in figure 5.8):

ψpl(r) = 1− r

R
(5.53)

The external work rate is given by:

WE =
1

3
p0(πR2) δ (5.54)

With given deflection, the rotation about the radial yield line in the θ direction
φθ is easy to obtain as φθ = δ/(rR) (Chen and Han, 1988). Therefore, the rate
of internal energy dissipation per unit area is m0δ/(rR). Integrating over the
slab area, one can get the total rate of internal energy dissipation:

WI = 2π

∫ R

0

m0
δ

rR
dr = 2πm0δ (5.55)

The virtual work theorem states that:

WE = WI (5.56)

Hence by substituting the previous expressions one can get:

1

3
p0(πR2) δ = 2πm0δ (5.57)

where p0(πR2) = Fsu, being Fsu the collapse load.
Therefore the ultimate resistance force [N] is given by:

Fsu = 6πm0 (5.58)
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p0

R R

R

r

O

1
ψpl(r)

Figure 5.8: Case 1: the plastic shape of deformation.
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p0

R R

δ

δ ψpl(r)

Figure 5.9: Case 1: failure mechanism of a simply supported circular slab under
uniform load p0.
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Plastic stage coefficients

The transformation coefficients for the plastic stage are equal to:

m∗p =

∫ 2π

0

∫ R

0

ρhψ2(r) r dθ dr (5.59)

=
ρhπR2

6
(5.60)

k∗p = 0 (5.61)

p∗p = p(t)

∫ 2π

0

∫ R

0

ψ(r) r dθ dr (5.62)

= p(t)
πR2

3
(5.63)

= p(t)L∗p (5.64)

By using the same approach that was previously illustrated (Biggs, 1964),
the following expressions for the normalized transformation coefficients can be
obtained:

Kp
M =

m∗p
mt

=
1

6
(5.65)

Kp
L =

p∗p(t)

pt(t)
=

1

3
(5.66)
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5.2.3 Example of dynamic analysis

In this section the graphical outputs of a dynamic analysis of example, per-
formed using the algorithms proposed in this work, will be presented.
In order to simulate a shock tube specimen, the data assumed to perform this
analysis are the following ones:

Slab geometry:

• slab thickness h = 0.10 m;

• slab radius R = 0.29 m.

Traditional reinforcement characteristics:

• concrete cover c = 0.02 m;

• characteristic yielding stress of steel fyk = 430 MPa;

• steel elastic Young modulus Es = 206 GPa;

• rebar diameter φ = 12 mm;

• number of rebars nrebar = 5.

Concrete characteristics:

• characteristic resistance of concrete fck = 70 MPa;

• concrete elastic Young modulus Ec = 42.6 GPa;

• Poisson modulus ν = 0.2;

• concrete density ρ = 2500 kg/m3.

Load characteristics:

• peak pressure pmax = 2.6 MPa;

• total load time duration td = 10 ms;

• shape of the pulse: right-angle triangle.

The dynamic analysis was run considering to reach eight peaks in the displace-
ment response before the analysis stopped (i.e., npeaks = 8), as can be seen in
figure 5.12.
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Figure 5.10: Case 1, example: generalized load vs time.
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Figure 5.11: Case 1, example: mid-span displacement versus resistance force.
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Figure 5.12: Case 1, example: mid-span displacement versus time.

Figure 5.11 clearly shows the achievement of the collapse load Fsu, and
figure 5.13 evidences how the system reaches its plasticization from 0.225 to
0.515 ms in the positive phase. Within this interval the system works with the
plastic shape function, meaning that all the generalized parameters (k∗, p∗, m∗)
change. This is highlighted in figure 5.10, in which can be seen that during the
plastic interval the behaviour of the generalized load p∗ changes in a sudden way,
and when the system turns back to the elastic phase another sudden change to
elastic behaviour occurs.
It has been observed that the positive plasticization is reached in the first cycle
and in the subsequent cycles the plastic branch is not reached any more due
to the decreasing trend of the excitation pulse. Therefore, for decreasing pulse
shapes, the highest structure damage is expected in the first cycles.
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Figure 5.13: Case 1, example: resistance force versus time.
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5.2.4 Pressure-impulse diagrams

Putting into practice the concepts already seen in chapter 4, this section devel-
ops all the calculations in order to derive the p-i diagrams.
The calculation of the asymptotes takes advantage of the energetic approach
described in the previous chapter, for which it is necessary to compute the max-
imum external energy, the maximum kinetic energy and the maximum internal
energy dissipated by the system.
It will be found that there are two cases for computing the maximum internal
energy depending on the allowable threshold displacement w̃max, because this
value may lie in the elastic phase or in the plastic one according to the charac-
teristics of the generalized system.
After the asymptotes calculation, the p-i curve is derived with the algorithms
proposed in chapter 4, namely by means of iterative calculations.

Kinetic energy. Referring to the generic plate element as represented in fig-
ure 5.14, one can compute the kinetic energy as follows:

K =

∫ ∫
S

1

2
mv20 dS =

∫ 2π

0

∫ R

0

1

2
ρ h v20 r dθ dr (5.67)

where v0 is the initial velocity, which can be defined exploiting the momentum
definition according to the impulse theorem:

v0 =
I

m
=

i r dθ dr

ρ h r dθ dr
=

i

ρ h
(5.68)

being I the total impulse [F·T], i the specific impulse [F·T/L2] and m =
ρ h r dθ dr the total mass of the plate element [M].
Finally the expression of the kinetic energy can be rewritten as:

K = 2πρh
1

2

∫ R

0

i2

ρ2 h2
r dr =

i2πR2

2ρh
(5.69)

A) Case in which w̃max < wel

As was mentioned in the introduction to this section, under certain geometrical
and stiffness conditions it is possible to obtain a damage threshold w̃max smaller
than the displacement at the elastic limit wel, leading to different formulations
for the strain energy computation. In order to prove this statement, the case of
a simply supported circular slab made in FRC has been considered. Since it is
necessary to compare the values of wel and w̃max, one should remember from
the previous computations that:

wel =
Fsu
k∗e

(5.70)

and from equation 5.40:

k∗e =
D

R2

64π(ν + 1)(ν + 7)

3(ν + 5)2
=

D

R2
Cν,1 (5.71)
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h

r dθ

dr

i

Figure 5.14: A generic circular plate element subjected to a specific impulse of
intensity i.

where the coefficient Cν,1 has been introduced in order to obtain a compact
expression. Note that this coefficient varies little with varying ν, thus can be
practically considered as a constant.
Recalling the expression for the constant D which appears in the Germain-
Lagrange equation for plates (equation 2.56):

D =
E h3

12(1− ν)2
= E h3 Cν,2 (5.72)

where the coefficient Cν,2 has been introduced in order to obtain a compact
expression. Note that also this coefficient varies little with varying ν.
Substituting equation 5.72 into equation 5.71 one can get:

k∗e =
E h3

R2
Cν,1 Cν,2 =

E h3

R2
Cν (5.73)

where the coefficient Cν collects all the dependency on the Poisson coefficient
ν. Now recalling equation 5.58:

Fsu = 6πm0 (5.74)

and substituting into it equation 5.28:

m0 = fFtud
h2

2
+ (fFtsd − fFtud)

h2

6
(5.75)

=
h2

2

[
fFtud +

1

3
(fFtsd − fFtud)

]
(5.76)

one can obtain:

Fsu = 3π

[
fFtud +

1

3
(fFtsd − fFtud)

]
h2 = Cf h

2 (5.77)
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where the coefficient Cf collects all the dependency on the strength parameters
of the FRC. Now substituting equation 5.73 and equation 5.77 into equation
5.70, one can finally work out:

wel =
Fsu
k∗e

=
Cf h

2

E h3

R2
Cν

=
R2

E h

(
Cf
Cν

)
=

R2

E h
Cf,ν (5.78)

where the coefficient Cf,ν collects all the factors related to the strength and to
the Poisson modulus.
Recalling equation 5.29:

w̃max = R
CTODu

2h
(5.79)

and comparing it to equation 5.78:

wel Q w̃max (5.80)

one can finally obtain:
R2

E h
Cf,ν Q R

CTODu

2h
(5.81)

R

E
Cf,ν Q

CTODu

2
(5.82)

The analysis performed above shows that, according to the selected damage
criterion, it is possible to obtain values of w̃max smaller than wel when the ratio
R/E tends to be very large; in addition, from a practical point of view, E could
be considered as a constant, because we are talking about a plate made of the
same material. Therefore, when R is large enough, the threshold value might lay
in the elastic stage, thereby it is a matter of geometrical nature. Physically this
issue makes sense because the value of CTODu has been chosen in order to limit
the crack opening displacement at midspan, which is not directly related with
the achievement of the plasticization of the whole structure. For a very large slab
the value of CTODu is reached before obtaining the complete plasticization of
the structure. That is why the threshold displacement might lay in the idealized
elastic phase, but actually the structure has already started to plasticize. The
same procedure outlined above may be applied to R/C, leading to the same
conclusions.

Figure 5.15 demonstrates that the plate radius R influences directly the
damage threshold. The decreasing path explains how the plastic contribute to
the total energy decreases as R increases. Therefore plates with small values of
R will be allowed to dissipate more energy in the plastic phase with respect to
plates with greater values of R. It is worth noting that within the framework
of shock tube experimental tests only small plate radii are of interest.

Elastic strain energy. When the selected damage threshold is smaller than
the displacement at the elastic limit (i.e. w̃max < wel), the strain energy is
simply represented by the elastic one, as can be seen in figure 5.16.

Uel =
1

2
k∗e w̃

2
max (5.83)
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Figure 5.15: Variation of w̃max/wel as a function of R (case 1).
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Figure 5.16: Elastic strain energy.
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Maximum possible work. When w̃max < wel the shape function to assume
in the computation of the maximum possible work is the elastic one:

W el
max =

∫ ∫
S

p(r)w(r)S =

∫ 2π

0

∫ R

0

p0w(r) r dθ dr (5.84)

Recalling the elastic shape function that was chosen for case 1:

w(r) = w̃max

[
R2 − r2

R4

(
ν + 1

ν + 5

)(
ν + 5

ν + 1
R2 − r2

)]
(5.85)

and substituting it into equation 5.84 one can finally obtain the expression for
the maximum work:

W el
max = w̃max

p0 π R
2(ν + 7)

3(ν + 5)
(5.86)

Quasi-static asymptote. By exploiting the definition that permits to work
out the quasi-static asymptote as it was presented in the previous chapter:

Uel = W el
max (5.87)

and performing the needed substitutions one can get:

1

2
k∗e w̃

2
max = w̃max

p0 π R
2(ν + 7)

3(ν + 5)
(5.88)

Finally the quasi-static asymptote has the following expression:

q.s.a. = p0 =
3k∗e(ν + 5)

2πR2(ν + 7)
w̃max (5.89)

Recalling that:

L∗e =
πR2(ν + 7)

3(ν + 5)
(5.90)

(which is the multiplier coefficient to get the generalized load in the elastic
stage), equation 5.89 can be rewritten in a compact form as follows:

q.s.a. =
k∗e

2L∗e
w̃max (5.91)

from which it is clear that the quasi-static asymptote is dependent of stiffness
and geometric characteristics.

Impulsive asymptote. As was discussed in chapter 4, the impulsive asymp-
tote can be worked out by exploiting the following equation:

K = Uel (5.92)

Substituting equations 5.69 and 5.83 into the previous expression:

i2πR2

2ρh
=

1

2
k∗e w̃

2
max (5.93)

Equation 5.93 can be rewritten in compact form as follows, highlighting the
impulsive asymptote:

i.a. =

√
2mUel
Aload

(5.94)

where m = ρ h is the specific mass per unit area and Aload = πR2 is the plate
area occupied by the load.



92 CHAPTER 5. APPLICATIONS

B) Case in which w̃max > wel

Elastoplastic strain energy. When the selected damage threshold is greater
than the displacement at the elastic limit (i.e. w̃max > wel), the strain energy is
represented by the sum of the elastic and plastic energy, as can be seen in figure
5.17. In the calculation of the maximum possible work both the elastic and
plastic contributes will be considered. The energy will be computed assuming
that the damage threshold w̃max is reached during the first cycle, namely in the
loading branch and not in the unloading one, thus excluding the possibility of
obtaining a negative work contribute.
Under this hypothesis, the elastoplastic strain energy is equal to:

wel

Fsu

Fs

w

1

~
wmax

Uep

*ke

Figure 5.17: Elastoplastic strain energy.

Uep = Uel + Upl =
wel · Fsu

2
+ (w̃max − wel)Fsu = Fsu

(
w̃max −

wel
2

)
(5.95)

Maximum possible work. When w̃max > wel, both the contributes of the
elastic and plastic stages to the total work must be considered.

W ep
max = p∗elmax wel + p∗plmax (w̃max − wel) (5.96)

= L∗e p0 wel + L∗p p0 (w̃max − wel) (5.97)

=
p0 πR

2 (ν + 7)

3(ν + 5)
wel +

p0 πR
2

3
(w̃max − wel) (5.98)

where L∗e and L∗p are the multiplier coefficients to get the generalized load in
the elastic and plastic stage, respectively.

Quasi-static asymptote. As was done previously, the expression for the
quasi-static asymptote is exploited:

Uep = W ep
max (5.99)
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which yields, together with equations 5.95 and 5.98:

Fsu

(
w̃max −

wel
2

)
= wel

p0 πR
2 (ν + 7)

3(ν + 5)
+ (w̃max − wel)

p0 πR
2

3
(5.100)

The last equality provides the expression for the quasi-static asymptote:

q.s.a. = p0 =
Uep

πR2

3

[
wel

(ν + 7)

(ν + 5)
+ w̃max − wel

] (5.101)

Recalling that:

L∗p =
πR2

3
(5.102)

(which is the multiplier coefficient to get the generalized load in the plastic
stage), equation 5.101 can be rewritten in a more compact form as follows:

q.s.a. =
Uep

L∗p

[
wel

(ν + 7)

(ν + 5)
+ w̃max − wel

] (5.103)

Impulsive asymptote. Also here the procedure is the same that was previ-
ously followed, namely by making use of the equation:

K = Uep (5.104)

and recalling equation 5.69 and 5.95, one can get:

i2πR2

2ρh
= Fsu

(
w̃max −

wel
2

)
(5.105)

Rearranging the last equation one can finally achieve the expression for com-
puting the impulsive asymptote:

i.a. = i =

√√√√2ρ hFsu

(
w̃max −

wel
2

)
π R2

(5.106)

In addition, equation 5.106 can be rewritten in compact form as follows:

i.a. =

√
2mUep
Aload

(5.107)

where m = ρ h is the specific mass per unit area and Aload = πR2 is the plate
area occupied by the load.
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Plotted diagrams

In this section some results will be presented. The results illustrated as follows
correspond to circular plates made in RC and FRC. The geometrical and mate-
rial properties are assumed as the same values taken from the dynamic analysis
example; however these data are written inside the figures. The chosen exci-
tation pulse shape is a decreasing exponential function, with the parameter λ
set equal to 5, in order to get a more realistic representation of a blast loading
shape. The value of wmax is recorded in the figures and corresponds to the
damage threshold computed according to the selected criterion.

RC. The following example (figure 5.18) shows the p-i curve generated by
using the algorithms proposed in this work. The geometrical dimensions and
the RC material properties were adopted in order to represent a sample for the
shock tube test.
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Figure 5.18: Case 1: example of p-i diagram for a reinforced concrete plate.
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FRC. As follows, an example of the algorithms’ application is performed for
special plate’s characteristics (figure 5.19), which correspond to a possible shock
tube’s specimen. The FRC material properties adopted are taken from exper-
imental results recorded in the paper Mechanical properties of steel fibre rein-
forced concrete exposed to high temperatures (Colombo et al., 2010).
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Figure 5.19: Case 1: example of p-i diagram for a fibre reinforced plate.
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5.3 Case 2: circular slab on grade

Consider here the bending of a circular slab of radius R, with free edge, sub-
jected to a uniform circular load of intensity p0 and radius b, as shown in figure
5.20. In order to simplify the soil-structure interaction, whose analysis is very
complex, soil is modelled as a Winkler’s soil. Winkler’s soil represents a bed of
independent springs under the structure having purely elastic behaviour. The
reaction provided by these springs is equal to the displacement in a certain
point times the elastic constant ks, which corresponds to a given type of soil as
reported in table 5.1.

p0

b

h

R

Figure 5.20: Three dimensional picture representing a circular slab resting on a
Winkler-type soil, subjected to a uniformly distributed circular load of radius b
with intensity p0.

5.3.1 Elastic theory

The deflection of the slab within the loaded region is denoted as w1(r), whilst
w2(r) is the deflection of the slab within the unloaded region, as shown in figure
5.21. Note that outside the region occupied by the slab (r > R) there are no
surface displacements, though in the reality there would be soil motion even
outside that region. This is due to the discontinuous behaviour of the Winkler
medium.
In mathematical form, the subgrade reaction can be described by:

q(r) = ksw(r) (5.108)

where ks is the modulus of the foundation.
Starting from the plate equilibrium equation of Sophie Germain - Lagrange

(equation 2.84):

∇4
rw(r) =

p(r)

D
(5.109)
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wmax

w

Figure 5.21: A circular slab resting on a Winkler-type soil, subjected to a uni-
form circular load of intensity p0.
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Table 5.1: Range of modulus of subgrade reaction ks according to Bowles (1968)

Soil ks [kN/m3]

Loose sand 4800-16000
Medium dense sand 9600-80000
Dense sand 64000-128000
Clayey medium dense sand 32000-80000
Silty medium dense sand 24000-48000
Clayey soil:
qa ≤ 200 kPa 12000-24000
200 < qa ≤ 800 kPa 24000-48000
qa > 200 kPa >48000

and adding the term due to the soil reaction, one can get the governing differ-
ential equation for this case:

D∇4
rw(r) + ksw(r) = p(r) (5.110)

Equation 5.110 can be rewritten as follows:(
d2

dr2
+

1

r

d

dr

)(
d2w

dr2
+

1

r

dw

dr

)
=

1

D
(p− ksw) (5.111)

By introducing the characteristic length l:

l = 4

√
D

ks
(5.112)

and the dimensionless coordinate ζ = r/l, equation5.111 can be rewritten as:(
d2

dζ2
+

1

ζ

d

dζ

)2

w + w =
pl4

D
(5.113)

Introducing the notation:

∇2
ζ =

d2

dζ2
+

1

ζ

d

dζ
(5.114)

finally one can get:

∇4
ζw(r) + w(r) =

pl4

D
(5.115)

which is the compact form of the governing differential equation of bending of
a circular slab resting on a Winkler-type elastic medium.
It is convenient to consider the loaded and the unloaded regions separately. The
deflection of the slab in the loaded and in the unloaded regions are denoted by
w1(r) and w2(r), respectively. Thus two governing differential equation must
be solved:

• In the loaded region (0 ≤ r ≤ b):

∇4
ζw1(r) + w1(r) =

p0l
4

D
(5.116)
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• In the unloaded region (b < r ≤ R):

∇4
ζw2(r) + w2(r) = 0 (5.117)

The solutions of these equations can be found in Selvadurai (1979), amongst
the other authors.

• In the loaded region (0 ≤ r ≤ b) the solution is given by:

w1(r) =
p0
ks

+ C1Z1(r/l) + C2Z2(r/l) + C3Z3(r/l) + C4Z4(r/l) (5.118)

• In the unloaded region (b < r ≤ R) the solution is given by:

w2(r) = C5Z1(r/l) + C6Z2(r/l) + C7Z3(r/l) + C8Z4(r/l) (5.119)

where the Zn (n = 1, 2, 3, 4) functions are defined as follows:

Z1(ζ) = Re J0

(
ζ
√
i
)

(5.120)

Z2(ζ) = Im J0

(
ζ
√
i
)

(5.121)

Z3(ζ) = Re H
(1)
0

(
ζ
√
i
)

(5.122)

Z4(ζ) = Im H
(1)
0

(
ζ
√
i
)

(5.123)

where J0
(
ζ
√
i
)

is the Bessel function of the first kind of zero order andH
(1)
0

(
ζ
√
i
)

is the Hankel function of the first kind of zero order (Abramowitz and Stegun,
1965).
The general definition of the Hankel function is:

H(1)
ν (z) := Jν(z) + iYν(z) (5.124)

where Yν(z) is the Bessel function of the first kind of ν order.
There are also derivation formulae for the Bessel and the Hankel functions,
which will be exploited in the following computations in order to derive the Z
functions previously defined, working out Z ′1(ζ), Z ′2(ζ), Z ′3(ζ) and Z ′4(ζ) (Jahnke
and Emde, 1945).
These identities are:

d

dz
Jν(z) :=

1

2
(Jν−1(z)− Jν+1(z)) (5.125)

d

dz
H(1)
ν (z) :=

νH
(1)
ν (z)

z
−H(1)

ν+1(z) (5.126)

Going back to the analysis of the circular slab, it can be shown that the slope
dw/dr, the bending moments Mr and Mθ and the shear force Qr are given by
the following expressions:

dw

dr
=

1

l
[C1Z

′
1(r/l) + C2Z

′
2(r/l) + C3Z

′
3(r/l) + C4Z

′
4(r/l)] (5.127)
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Mr = −D
l2
{C1Z2(r/l)− C2Z1(r/l) + C3Z4(r/l)

− C4Z3(r/l)− l

r
(1− ν) [C1Z

′
1(r/l) + C2Z

′
2(r/l)

+ C3Z
′
3(r/l) + C4Z

′
4(r/l)] } (5.128)

Mθ = −D
l2
{ν [C1Z2(r/l)− C2Z1(r/l) + C3Z4(r/l)

− C4Z3(r/l)] +
l

r
(1− ν) [C1Z

′
1(r/l) + C2Z

′
2(r/l)

+ C3Z
′
3(r/l) + C4Z

′
4(r/l)] } (5.129)

Qr = −D
l3

[C1Z
′
2(r/l)− C2Z

′
1(r/l) + C3Z

′
4(r/l)− C4Z

′
3(r/l)] (5.130)

Furthermore, it is apparent from equation 5.118 and equation 5.119 that eight
arbitrary constants must be calculated in order to determine the shape of de-
flection of the elastic system. This task can be accomplished by imposing the
suitable boundary conditions.
The first two boundary conditions can be imposed by considering the symmetry
of the circular slab problem:


(1)

(
dw

dr

)∣∣∣∣
r=0

= 0

(2) Qr(0) = 0

(5.131)

These conditions, together with equations 5.127 and 5.130, yield C3 = C4 = 0.
The six remaining constants can be determined by using the four continuity
conditions at r = b and the two free edge boundary conditions at r = R:



(1) w1(b) = w2(b)

(2)

(
dw1

dr

)∣∣∣∣
r=b

=

(
dw2

dr

)∣∣∣∣
r=b

(3) Mr1(b) = Mr2(b)

(4) Qr1(b) = Qr2(b)

(5) Mr2(R) = 0

(6) Qr2(R) = 0

(5.132)

where Mr1, Qr1 are, respectively, the expressions for the bending moment and
the shear force obtained from w1(r); analogously Mr2, Qr2 are obtained from
w2(r).
The six conditions in equation 5.132 result in a system from which the six
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constants C1, C2, C5, C6, C7 and C8 can be uniquely worked out:

(1) C1Z1b + C2Z2b − C5Z1b − C6Z2b − C7Z3b − C8Z4b = −p0
ks

(2) C1Z
′
1b + C2Z

′
2b − C5Z

′
1b − C6Z

′
2b − C7Z

′
3b − C8Z

′
4b = 0

(3) C1

[
Z2b −

l

b
(1− ν)Z ′1b

]
− C2

[
Z1b +

l

b
(1− ν)Z ′2b

]
−C5

[
Z2b −

l

b
(1− ν)Z ′1b

]
+ C6

[
Z1b +

l

b
(1− ν)Z ′2b

]
−C7

[
Z4b −

l

b
(1− ν)Z ′3b

]
+ C8

[
Z3b +

l

b
(1− ν)Z ′4b

]
= 0

(4) C1Z
′
2b − C2Z

′
1b − C5Z

′
2b + C6Z

′
1b − C7Z

′
4b + C8Z

′
3b = 0

(5) C5

[
Z2R −

l

R
(1− ν)Z ′1R

]
− C6

[
Z1R +

l

R
(1− ν)Z ′2R

]
+C7

[
Z4R −

l

R
(1− ν)Z ′3R

]
− C8

[
Z3R +

l

R
(1− ν)Z ′4R

]
= 0

(6) C5Z
′
2R − C6Z

′
1R + C7Z

′
4R − C8Z

′
3R = 0

(5.133)

In this system, Znb, Z
′
nb, ZnR and Z ′nR (with n = 1, 2, 3, 4) have been used to

denote the values assumed by the Zn and Z ′n functions when r = b and r = R,
respectively.
The system in equation 5.133 can be rewritten in compact form as follows:

Z ·C = L (5.134)

where Z is the matrix containing all the multiplier coefficients of the unknown
constants Cn (with n = 1, 2, 5, 6, 7, 8), which are contained in the vector C. The
vector L includes the effects of the external load and the constant of the Winkler
medium. Obviously the solution is now given by the inversion of Z matrix:

C = Z−1 · L (5.135)
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Elastic stage coefficients

In this section the transformation coefficients to obtain a SDOF system are
developed according to the variational approach.
Firstly, on the basis of the elastic solution just outlined above, the elastic shape
function is assumed as the ratio of the normalized deflection with respect to the
maximum one:

ψel(r) =
w(r)

wmax
(5.136)

Given the complexity of the expressions arising from an analytical integration
of the above shape function, a numerical integration may be preferred in order
to work out the transformation coefficients for the elastic stage. The method of
numerical integration adopted herein is the so-called midpoint rule or rectangle
rule, which permits to compute an approximation to a definite integral by finding
the area of a collection of rectangles, whose heights are determined by the values
of the function. This discretization process gives rise to the expressions reported
below.
The generalized elastic mass is given by:

m∗e =

∫ 2π

0

∫ R

0

ρhψ2(r) r dθ dr (5.137)

= 2πρh

NR∑
k=1

ψ2
k k4r2 (5.138)

where:

• NR = R
4r , being 4r the spatial step for the numerical integration, defined

as a fraction of R;

• ψk = ψ(k4r) is the elastic shape function evaluated in r = k4r.

The generalized elastic stiffness is:

k∗e = D

∫ 2π

0

∫ R

0

[(
∂2ψ

∂r2
+

1

r

∂ψ

∂r

)2

− 2(1− ν)

(
∂2ψ

∂r2
1

r

∂ψ

∂r

)]
r dθ dr

+

∫ 2π

0

∫ R

0

ksψ
2 r dθ dr (5.139)

= 2πD

NR−1∑
k=1

[(
42ψ

4r2
+

1

k4r
4ψ
4r

)2

− 2(1− ν)

(
42ψ

4r2
1

k4r
4ψ
4r

)]
k4r2

+ 2π

NR−1∑
k=1

ksψ
2
k k4r2 (5.140)

where the partial derivatives expressed in terms of finite differences are defined
as follows:

4ψ
4r

=
ψk+1 − ψk
4r

(5.141)

42ψ

4r2
=

4
(
4ψ
4r

)
4r

=
ψk+2 − 2ψk+1 + ψk

4r2
(5.142)



5.3. CASE 2: CIRCULAR SLAB ON GRADE 103

It should be noted that in the expression for the generalized stiffness (equation
5.140) appears a term dependent of ks, being the term that takes into account
the soil contribute.
The generalized load coefficient is:

p∗e = p(t)

∫ 2π

0

∫ b

0

ψ(r) r dθ dr (5.143)

= p(t) 2π

Nb∑
k=1

ψk k4r2 (5.144)

= p(t)L∗e (5.145)

where:

Nb =
b

4r
(5.146)

with b being the radius of the uniformly distributed loaded region.
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5.3.2 Plastic mechanism and ultimate resistance

The problem of soil-structure interaction has been studied with great interest
both by geotechnical and structural engineers for many years. Generally, the
treatment of this problem is preferable approached by plastic or limit analysis
methods instead of elastic methods. Plastic theories propose simpler methods
of analysis, giving more reliable results which are less sensitive to the exact
distribution of the contact stress between the foundation and the supporting
soil than those of the elastic theories (Chen and Han, 1988).

In this section, the ultimate resistance load of concrete slabs on elastic foun-
dation is studied. In literature many examples can be found which provide the
upper bounds of the collapse load of a concrete slab, mainly under the title of
yield line theory (Chen and Han, 1988). This approach was first introduced
independently of the limit analysis theorems by Johansen (1972); in his book
Yield line formulae for slabs many examples can be found about foundation
slabs with different geometry and several boundary conditions along with their
collapse load.

Let’s consider now the load carrying capacity of a concrete slab under a
central uniform load with a variable radius. The slab is assumed to rest on a
linear elastic (Winkler) soil medium. The use of plastic methods requires the
right collapse mechanism definition. This is not an easy task because the col-
lapse mechanism will depend on the geometrical dimensions and on the elastic
properties of the soil and of the slab. In this work, two collapse mechanisms are
proposed: the first one (case 2.A) considers the formation of a negative circular
yield line with an inverted cone shape inside of it, while the other mechanism
(case 2.B) considers only the inverted cone shape originating from the plate
edge.
Case 2.A involves a very flexible plate, namely a plate large enough in order
to allow the formation of the circular yield line and low values of soil displace-
ments at the plate edges. On the other hand, case 2.B involves very small and
stiff plates with large values of soil displacements at the plate edges, with no
formation of the circular yield line. These examples will be developed in the
following subsections.

As it was exposed, case 2.A and case 2.B are opposite cases, so a mathemat-
ical tool is needed in order to distinguish one to the other. The collapse load
depends on the radius d of the negative circular yield line, which is unknown
(Meda, 2003). Meda proposes a very large slab supported on grade subjected to
a concentrated load and the circular crack is assumed to occur at the location
of the maximum negative moment. Westergaard (1926) indicates the maximum
negative moment at 2lc with lc (characteristic length) equal to:

lc = 4

√
D

ksoil
(5.147)

Therefore, if R < 2lc there is no negative plasticization line. If R > 2lc there is
a negative plasticization line, which can be computed according to the theory
of Chen and Han (1988). The relation between R and 2lc helps to distinguish
between case 2.A and 2.B, but it should be remembered that other conditions
regarding the soil displacement at the plate edges are required.

It has been noticed that different stiffness conditions will lead to different
solutions; to address this issue the plot shown in figure 5.22 was developed.
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As can be seen in this graph, when lc is small (i.e., when the plate stiffness
is small with respect to the soil one), ψel(r = R) has decreasing values as R
increases, meaning that the displacement at the plate edges is smaller when
the plate is thinner and wider. In this last case, the midspan displacement is
predominant with respect to the one at the plate extremities. On the contrary,
when ψel(r = R) increases, the displacement at the slab endings is predominant
with respect to the midspan one. Summarizing, we could say that within this
framework ψel(r = R) is a representative parameter of the plate-soil system
flexibility. Note that figure 5.22 was developed for b = 0.1 m and h = 0.10 m.
By using the algorithms proposed in this work it is possible to draw figures like
5.22 for any value of b and h.

Knowing the geometrical dimensions (R, h, b) and the stiffness parameters
(ksoil, D) of a plate-soil system, just placing a point in the graph 5.22 a designer
can know if the conditions belong either to a very rigid plate or to a very flexible
plate. In this work it has been supposed that values of 0.9 < ψel(r = R) < 1
fulfil the hypothesis assumed for rigid plates with absence of the circular yield
line, while values of 0 < psiel(r = R) < 0.1 fulfil the hypothesis assumed for
very flexible plates with presence of the circular yield line. In this way, the plot
could be used by the designer to distinguish between the two cases that will be
presented and solved in the following subsections.
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5.3.3 Case 2.A: presence of the negative circular yield line
(R > 2lc)

As the load p is applied to the concrete pavement over a circle of radius b, the
slab would be driven into the soil until plastic radial moments are realized and
a plastic mechanism develops in the slab, as shown in figure 5.23. This collapse
mechanism was first studied by Chen and Han (1988) and consists of an infinite
number of radial yield lines and a circular yield line of radius d. Therefore the
plastic shape assumed in presence of the formation of a circular yield line has
the following expression:

ψpl(r) =

{
1− r

d
if 0 ≤ r ≤ d,

0 if d < r ≤ R.
(5.148)

In order to assume this shape function and the corresponding collapse mecha-
nism herein described, it is necessary to satisfy the hypothesis that the elastic
deformation at the slab edges ψel(r = R) is very small with respect to the cen-
tral deformation of the plate. Under this hypothesis it is reasonable to neglect
the displacement at the slab edges, and to consider a plastic shape as defined by
equation 5.148. With further increase of the load, the slab deforms into a con-
ical surface but no sudden failure is observed; even though the external forces
are increasing, the system is kept in equilibrium since also the soil reactions
are increasing. However, the displacement rate under the applied external load
grows rapidly at the formation of the failure mechanism until the load and the
collapsed concrete sink into the ground (Chen and Han, 1988). The interest of
limit analysis is to determine the load at which a plastic collapse mechanism
develops in the slab. Thereby, in the following calculation, the soil reaction q is
assumed to have a conical distribution with radius R.
The work done by the applied load Wp and by the upward soil reaction Wq are

given by:

Wp =

∫ 2π

0

∫ b

0

p0δ
(

1− r

d

)
r dθ dr (5.149)

= 2π
Fsu
πb2

δ

∫ b

0

(
1− r

d

)
r dr (5.150)

= Fsuδ

(
1− 2b

3d

)
(5.151)

Wq = −
∫ 2π

0

∫ d

0

q0

(
1− r

R

)
δ
(

1− r

d

)
r dθ dr (5.152)

= −2πq0δ

∫ d

0

(
1− r

R

)(
1− r

d

)
r dr (5.153)

(5.154)

By enforcing the equilibrium between the load distribution and the soil reaction
one can work out the value of q0 as follows:

q0 =
3Fsu
πb2

(5.155)
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Figure 5.23: Case 2.A: failure mechanism and assumed pressure distribution.
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By substituting this value into equation 5.154, one can finally get:

Wq = −2π
3Fsu
πb2

δ

∫ d

0

(
1− r

R

)(
1− r

d

)
r dr (5.156)

= −Fsuδ
(
d

R

)2(
1− d

2R

)
(5.157)

Now considering the internal works, with the deflection given, the rotation
about the radial yield line in the θ direction φθ is easy to obtain as φθ = δ/(rd)
(Chen and Han, 1988). Therefore the rate of internal energy dissipation per
unit area is m0δ/(rd). Integrating over the collapse area, one can get the total
rate of energy dissipation:

Wr = 2π

∫ d

0

m0
δ

rd
dr = 2πm0δ (5.158)

Considering that the rotation about the circular yield line in the radial direction
φd can simply be obtained as φd = δ/d, the internal energy dissipation worked
out by the circular yield line has the following expression:

Wd = 2πdm0δ/(d) = 2πm0δ (5.159)

The virtual work theorem states that:

WE = WI (5.160)

that means:
Wp +Wq = Wr +Wd (5.161)

From this work equation the ultimate resistance force [N] is obtained:

Fsu =
4πm0

1− 2

3

b

R

R

d
−
(
d

R

)2

+
1

2

(
d

R

)3 (5.162)

The position of the circular yield line can be determined from the following
minimization:

∂Fsu(d)

∂d
= 0 (5.163)

This condition leads to the following quartic equation in the variable d:

9

R4
d4 − 12

R3
d3 + 4

b

R
= 0 (5.164)

which can be solved with the smart analytical method discovered by Ferrari,
and first published in 1545 in Gerolamo Cardano’s book Ars Magna (Cardano,
1993). The solution of this equation obviously yields four roots: two of them
are complex, and the other two are real, but since one of them is always greater
than the slab radius R, only one root actually has the sought physical meaning.
Therefore, given the ratio b/R, the relative radius of the circular yield line d/R
can be found from the previous equation. By substituting the value of d/R so
obtained into the equation for Fsu(d), an upper bound ultimate resistance Fsu
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is obtained.
Equation 5.162 is plotted in figure 5.24 as a function of the relative load radius
b/R. As expected, the graph shows a sharp increasing tendency as b/R increases
until 0.75, due to the greater penetration of the plate into the soil.
Figure 5.25 clearly shows how the relative radius of the circular yield line d/R
varies when the relative load radius b/R changes.

It can be observed that for values of b/R > 0.75 there is no more a neg-
ative circular yield line. This means that from a certain point on, the failure
mechanism must switch from the one previously assumed to another conical
mechanism which involves the entire slab area. Consequently, the ultimate re-
sistance force changes and it is no more equal to the one given by the expression
developed before (see case 2.B).

Note that, for this collapse mechanism, the inverted cone shape is formed
after the circular yield line is developed. Therefore, the threshold value w̃max,
expressed in equations 5.13 and 5.29, is evaluated for R = d, because in this
case d represents the radius of the base of the inverted cone.
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Figure 5.24: Case 2.A: relative load radius b/R vs collapse load Fsu.
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Plastic stage coefficients

Considering the plastic shape function as described by equation 5.148, the plas-
tic stage transformation coefficients are derived as follows:

m∗p =

∫ 2π

0

∫ d

0

ρhψ2(r) r dθ dr (5.165)

= 2πρh

∫ d

0

(
1− r

d

)2
r dr (5.166)

=
1

6
ρhπd2 (5.167)

k∗p = 0 (5.168)

p∗p = p(t)

∫ 2π

0

∫ b

0

ψ(r) r dθ dr (5.169)

= 2πp(t)

∫ b

0

(
1− r

d

)
r dr (5.170)

= p(t) 2π

(
b2

2
− b3

3d

)
(5.171)

= p(t)L∗p (5.172)

According to Biggs (1964):

Kp
M =

m∗p
mt

(5.173)

Kp
R = 0 (5.174)

Kp
L =

p∗p(t)

pt(t)
(5.175)

where mt is the total mass and pt(t) is the total load, which in this case is
equal to pt(t) = p(t)πb2. Therefore by substitution the following normalized
parameters can be obtained:

Kp
M =

1

6

(
d

R

)2

(5.176)

Kp
L = 1− 2

3

b

d
(5.177)
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Example of dynamic analysis

In the current example, a very flexible plate is modelled, large enough to develop
a circular yield line. The data assumed to perform this analysis are the following
ones:

Slab geometry:

• slab thickness h = 0.10 m;

• slab radius R = 2.00 m.

FRC reinforcement characteristics:

• feq1 = 5.34 MPa;

• feq2 = 3.91 MPa;

• fck = 75 MPa.

Load characteristics:

• load radius b = 1.00 m;

• peak pressure pmax = 1 MPa;

• total load time duration td = 10 ms;

• shape of the pulse: right-angle triangle.

Soil characteristics:

• Winkler constant ks = 0.10 GPa/m (gravel).

In the current example all the data were hypothesized in order to obtain a very
flexible plate, with a rigidity smaller than the soil one.
The dynamic analysis was run considering to reach three peaks in the displace-
ment response before the analysis stopped (i.e., npeaks = 3), as can be seen in
figure 5.31.
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First, stiffness and rigidity comparative parameters are calculated, obtaining
2lc = 0.88, then by using figure 5.22 with R = 2 m the problem’s statement is
placed in the case in which the plate is less rigid than the soil (i.e. 0 < ψel(r =
R) < 0.1).
In this case the plate’s deformation is larger than the soil one, meaning that the
energy dissipation is worked out, mostly, by the plate.
When, as in this case, the plate’s rigidity is much smaller than the soil one,
the deformation and the energy dissipated in the entire system is provided,
practically, only by the plate. Figures 5.26 and 5.27 show this argument. The
soil deformation is evidently much smaller than the plate deformation, which is
very high in comparison.
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Figure 5.26: Case 2.A: elastic deformation.
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Figure 5.27: Case 2.A: normalized elastic shape of deformation.
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Figure 5.28: Case 2.A: plastic shape of deformation.
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The elastic and plastic deformation profiles (figures 5.27 and 5.28) show a
considerable difference between them and this is also evident in figure 5.29,
where a remarkable step in the plot of the generalized load p∗ corresponds to
the change of behaviour from elastic to plastic one.
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Figure 5.29: Case 2.A: generalized load vs time.
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Figure 5.30: Case 2.A: mid-span displacement versus resistance force.
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Figure 5.31: Case 2.A: mid-span displacement versus time.
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As can be seen in figure 5.32, at around 1 ms the plastic stage is reached and
the shape function changes from the elastic one to the plastic one. At about 15
ms the plasticization of the system ends and the elastic branch is followed again
according to the unloading path.
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Figure 5.32: Case 2.A: resistance force versus time.
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5.3.4 Case 2.B: absence of the negative yield line (R < 2lc)

Due to the absence of the circular yield line, the expected collapse mechanism
has an inverted cone shape where the radial yield lines appear progressively
during the loading process. For this case, it is known that the plate is much
more rigid than the soil, then a greater deformation of the soil with respect to
the one of the plate is expected.
The collapse mechanism proposed in this section considers that the reaction of
the soil has a rectangular distribution (see figure 5.34), disregarding the very
small triangular distribution provided by the very small deformation of the plate.
As was previously mentioned, it was decided that this hypothesis holds if the
plate deformation is lower than the 10% of the total system displacement, or,
equivalently, if the elastic displacement at the plate borders must be greater
than the 90% of the total system’s displacement.
According to the hypotheses just explained, the assumed plastic shape is:

ψpl(r) = 1− (1− ψel(r = R))
r

R
(5.178)

During the stage of definition of this shape, it was thought to include in it
the term ψel(r = R) that takes into account the displacement at the plate
extremities which has been reached at the end of the preceding elastic stage.
In other words, the term ψel(r = R) corresponds to the elastic displacement at
the plate’s edges achieved just before reaching the plastic stage. The assumed
plastic shape for this case is graphically visualized in figure 5.33.
Going through the procedure developed below by using the upper-bound theory

and the principle of virtual works, it is feasible to obtain the expression of Fsu.
Considering the plastic shape as defined by equation 5.178, the external work
rate done by the applied load is:

Wp =

∫ 2π

0

∫ b

0

p0 δ ψpl r dθ dr (5.179)

= 2π

∫ b

0

p0 δ
[
1− (1− ψel(R))

r

R

]
r dr (5.180)

= 2π p0 δ

[
b2

2
− (1− ψel(R))

b3

3R

]
(5.181)

The external work rate done by the soil reaction is:

Wq = −
∫ 2π

0

∫ R

0

q0 δ ψpl r dθ dr (5.182)

= −2π

∫ R

0

q0 δ
[
1− (1− ψel(R))

r

R

]
r dr (5.183)

= −2π q0 δ

[
R2

2
− (1− ψel(R))

R2

3

]
(5.184)

By means of static equilibrium between plate load and soil reaction one can
work out:

q0 = p0

(
b

R

)2

(5.185)
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Figure 5.33: Case 2.B: plastic shape of deflection.

Finally:

Wq = −2π p0 δ

[
b2

2
− (1− ψel(R))

b2

3

]
(5.186)

The total external work is:

WE = Wp +Wq = 2π p0 δ (1− ψel(R))
b2

3

(
1− b

R

)
(5.187)

The internal work is given by:

WI = 2πm0δ (1− ψel(R)) (5.188)

The virtual work theorem states that:

WE = WI (5.189)

Therefore the ultimate resistance force [N] is:

Fsu = p0(πb2) =
3πm0

1− b

R

(5.190)

Note that the collapse load Fsu does not depend on ψel(r = R). Equation 5.190
is plotted in figure 5.35. This plot clearly shows that, when the load tends
to occupy the entire slab surface, the resistance of the plate tends to infinite,
meaning that the plate simply penetrates in the soil, and this is consistent with
the theory previously discussed.
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Figure 5.34: Case 2.B: failure mechanism and assumed pressure distribution.
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Figure 5.35: Case 2.B: relative load radius versus ultimate resistance load.

Plastic stage coefficients

Considering the plastic shape function as defined by equation 5.178, one can
work out the transformation coefficients for the plastic stage. The plastic coef-
ficients are thus given by:

m∗p =

∫ 2π

0

∫ R

0

ρ hψ2
pl(r) r dθ dr (5.191)

= πR2 ρ h

(
1

6
+

1

3
ψel(R) +

1

4
ψ2
el(R)

)
(5.192)

k∗p = 0 (5.193)

p∗p = p(t)

∫ 2π

0

∫ R

0

ψpl(r) r dθ dr (5.194)

= p(t) 2π

[
b2

2
+

b3

3R
(ψel(R)− 1)

]
(5.195)

= p(t)L∗p (5.196)
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Example of dynamic analysis

In the current example, a very rigid plate in which there is no development of
the circular yield line is modelled. Dimensions and material characteristics try
to represent a shock tube specimen.
The data assumed to perform this analysis are the following ones:

Slab geometry:

• slab thickness h = 0.10 m;

• slab radius R = 0.29 m.

FRC reinforcement characteristics:

• feq1 = 5.34 MPa;

• feq2 = 3.91 MPa;

• fck = 75 MPa.

Load characteristics:

• load radius b = 0.24 m;

• peak pressure pmax = 2.6 MPa;

• total load time duration td = 10 ms;

• shape of the pulse: right-angle triangle.

Soil characteristics:

• Winkler constant ks = 0.03 GPa/m (dense sand).

The load radius b and the Winkler constant were chosen in order to simulate
the characteristics of a typical specimen in a shock tube test. In fact, the plate
specimen of radius 29 cm will be subjected to a uniform pressure distribution
having radius equal to 24 cm. Moreover, the plate will be supposed to rest on
dense sand, thus the soil modulus is selected accordingly.
The dynamic analysis was run considering to reach three peaks in the displace-
ment response before the analysis stopped (i.e., npeaks = 3).
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First, stiffness and rigidity comparative parameters are calculated, obtaining
2lc = 1.2, then by using figure 5.22 with R = 0.29 m the problem’s statement
is placed in the case in which the plate is much more rigid than the soil (i.e.
0.9 < ψel(r = R) < 1).
When, as in this case, the plate’s rigidity is much greater than the soil one, the
deformation and the energy dissipated in the entire system is mainly provided
by the soil. Figure 5.36 shows this argument. The soil deformation is evidently
much higher than the plate deformation, which is very small in comparison.
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Figure 5.36: Case 2.B: elastic deformation.
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Figure 5.37 illustrates the normalized plate’s deformation. The elastic shape
of deformation just describes the elastic qualitative form; due to the fact that
the deformation magnitude is very low, looking at the vertical axis one can see
that the border’s displacement respect to the central one is about 0.14% (flat
slope profile).
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Figure 5.37: Case 2.B: normalized elastic shape of deformation.
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Figure 5.38: Case 2.B: plastic shape of deformation.
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At around 5.5 ms the plastic stage is reached and the shape function changes
from the elastic one to the plastic one (see figure 5.42), therefore in the gener-
alized parameters there should be a change corresponding to this passing. In
figure 5.39, which plots the generalized load p∗ against time, there are no ev-
ident changes or steps in the graph, because the elastic and plastic shapes of
deformation are very flat and similar one to the other, so the change of shape
function is not perceivable.
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Figure 5.39: Case 2.B: generalized load vs time.
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The system reaches the plastic phase in the first cycle and, after that, several
cycles of loading and unloading are developed, reaching almost the negative
plastic phase (see figures 5.40 and 5.42).
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Figure 5.40: Case 2.B: mid-span displacement versus resistance force.
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Figure 5.41: Case 2.B: mid-span displacement versus time.
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Figure 5.42: Case 2.B: resistance force versus time.
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5.3.5 Pressure-impulse diagrams

Putting into practice the concepts already seen in chapter 4, this section devel-
ops all the calculations in order to derive the p-i diagrams.
The calculation of the asymptotes takes advantage of the energetic approach
described in the previous chapter, for which it is necessary to compute the max-
imum external energy, the maximum kinetic energy and the maximum internal
energy dissipated by the system.
It will be found that there are two cases for computing the maximum internal
energy depending on the allowable threshold displacement w̃max, because this
value may lie in the elastic phase or in the plastic one according to the charac-
teristics of the generalized system.
After the asymptotes calculation, the p-i curve is derived with the algorithms
proposed in chapter 4, namely by means of iterative calculations.

Kinetic energy. Referring to the generic plate element as represented in fig-
ure 5.14, one can compute the kinetic energy as follows:

K =

∫ ∫
S

1

2
mv20 dS =

∫ 2π

0

∫ b

0

1

2
ρ h v20 r dθ dr (5.197)

where v0 is the initial velocity, which can be defined exploiting the momentum
definition according to the impulse theorem:

v0 =
I

m
=

i r dθ dr

ρ h r dθ dr
=

i

ρ h
(5.198)

being I the total impulse, i the specific impulse and m = ρ h r dθ dr the total
mass of the plate element. Finally the expression of the kinetic energy can be
rewritten as:

K = 2πρh
1

2

∫ b

0

i2

ρ2 h2
r dr =

i2πb2

2ρh
(5.199)

A) Case in which w̃max < wel

Elastic strain energy. When the selected damage threshold is smaller than
the displacement at the elastic limit (namely w̃max < wel), the strain energy is
simply represented by the elastic one, as was shown in figure 5.16.

Uel =
1

2
k∗e w̃

2
max (5.200)

Maximum possible work. When the selected damage threshold is smaller
than the displacement at the elastic limit (namely w̃max < wel), the shape
function to assume in the computation of the maximum possible work is the
elastic one.

W el
max =

∫ ∫
S

p(r)w(r)S =

∫ 2π

0

∫ b

0

p0w(r) r dθ dr (5.201)

Recalling that the elastic shape function for case 2 was defined in a numer-
ical way, the discretization process yields to the following expression for the
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maximum possible work:

W el
max = w̃max

[
2π p0

Nb∑
k=1

ψel(k4r) k4r2
]

(5.202)

Quasi-static asymptote. By exploiting the definition that permits to work
out the quasi-static asymptote as it was presented in the previous chapter:

Uel = W el
max (5.203)

and performing the needed substitutions one can get:

1

2
k∗e w̃

2
max = w̃max

[
2π p0

Nb∑
k=1

ψel(k4r) k4r2
]

(5.204)

Finally the quasi-static asymptote has the following expression:

q.s.a. = p0 =
k∗e

4π
∑Nb

k=1 ψel(k4r) k4r2
w̃max (5.205)

Recalling that:

L∗e = 2π

Nb∑
k=1

ψel(k4r) k4r2 (5.206)

(which is the multiplier coefficient to get the generalized load in the elastic
stage), equation 5.205 can be rewritten in a compact form as follows:

q.s.a. =
k∗e

2L∗e
w̃max (5.207)

from which it is clear that the quasi-static asymptote is dependent of stiffness
and geometric characteristics.

Impulsive asymptote. As was done previously talking about case 1, the
impulsive asymptote can be obtained by exploiting the following equation:

K = Uel (5.208)

Substituting equations 5.199 and 5.200 into the previous expression:

i2πb2

2ρh
=

1

2
k∗e w̃

2
max (5.209)

Equation 5.209 can be rewritten in compact form as follows, working out the
impulsive asymptote:

i.a. =

√
2mUel
Aload

(5.210)

where m = ρ h is the specific mass per unit area and Aload = πb2 is the plate
area occupied by the load.
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B) Case in which w̃max > wel

Elastoplastic strain energy. When the selected damage threshold is greater
than the displacement at the elastic limit (i.e. w̃max > wel), the strain energy
is represented by the sum of the elastic and plastic ones, as can be seen in figure
5.17. In the calculation of the maximum possible work both the elastic and
plastic contributes will be considered. The energy will be computed assuming
that the damage threshold w̃max is reached during the first cycle, namely in the
loading branch and not in the unloading one, thus excluding the possibility of
obtaining a negative work contribute.
Under this hypothesis, the elastoplastic strain energy is equal to:

Uep = Uel + Upl =
wel · Fsu

2
+ (w̃max − wel)Fsu = Fsu

(
w̃max −

wel
2

)
(5.211)

Maximum possible work. When w̃max > wel, both the contributes of the
elastic and plastic stages to the total work must be considered.

W ep
max = p∗elmax wel + p∗plmax (w̃max − wel) (5.212)

= L∗e p0 wel + L∗p p0 (w̃max − wel) (5.213)

where L∗e and L∗p are the multiplier coefficients to get the generalized load in
the elastic stage and plastic stage, respectively.

L∗e = 2π

Nb∑
k=1

ψel(k4r) k4r2 (5.214)

It should be remembered that the value of L∗p changed according to the assumed
plastic shape function. This means that, in case 2.A (presence of the circular
yield line), the value of L∗p is given by:

L∗p = 2π

[
b2

2
− b3

3d

]
(5.215)

On the other hand, in absence of the circular yield line (case 2.B), the value of
L∗p is provided by:

L∗p = 2π

[
b2

2
− (1− ψel(r = R))

b3

3R

]
(5.216)

Quasi-static asymptote. As was done previously, the expression for the
quasi-static asymptote is exploited:

Uep = W ep
max (5.217)

which yields, together with equations 5.211 and 5.213:

Fsu

(
w̃max −

wel
2

)
= L∗e p0 wel + L∗p p0 (w̃max − wel) (5.218)

The last equality provides the expression for the quasi-static asymptote:

q.s.a. = p0 =
Uep

L∗e wel + L∗p (w̃max − wel)
(5.219)
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Impulsive asymptote. Also here the procedure is the same that was previ-
ously followed, namely by making use of the equation:

K = Uep (5.220)

and recalling equation 5.199 and 5.211, one can get:

i2πb2

2ρh
= Fsu

(
w̃max −

wel
2

)
(5.221)

Rearranging the last equation one can finally achieve the expression for com-
puting the impulsive asymptote:

i.a. = i =

√√√√2ρ hFsu

(
w̃max −

wel
2

)
π b2

(5.222)

Equation 5.222 can be rewritten in a compact form as follows:

i.a. =

√
2mUep
Aload

(5.223)

where m = ρ h is the specific mass per unit area and Aload = πb2 is the plate
area occupied by the load.

At this point, it is useful to highlight some concepts treated in the previous
sections. In the case 1, it was explained the variability of w̃max/wel with respect
to R, in an explicit algebraic form. For this case, it is not so easy to explain this
relation because all the formulations are complex and solved using numerical
algorithms. Thereby it is not possible to follow the same procedure as in the case
1, because the boundary conditions in the case 2 are completely different and
depending on the values of ksoil. Besides, another geometrical variable b (load
radius) appears, making this analysis even more complex. In fact, the relation
of w̃max/wel is not only dependent on the plate’s geometrical dimensions (R, h),
but also depends on the charge’s dimension (b). Moreover, the value of Fsu has a
strong dependence of b/R (see figures 5.24 and 5.35). It has been observed that,
when the value of b/R is close to 0.75 for case 2.A and to 1.0 for case 2.B, Fsu
increases in a very fast way, tending to infinitive. Recalling that wel = Fsu/k

∗
e ,

it can be seen that, for large values of Fsu, wel increases. Due to the increasing
of Fsu, the relation w̃max/wel tends to decrease.

Let’s remember that the case 2.A is limited to small values of ψel(r = R)
(edges’ displacement), thus, in order to meet this condition, values of b/R must
be small enough as well. Thereby, the ratio w̃max/wel will probably remain
greater than 1 for most of the cases, meaning that w̃max is more likely to fall
into the plastic stage.

On the other hand, the case 2.B works with high values of ψel(r = R) and,
for that reason, it will be more likely to find values of w̃max/wel lower than 1,
but this will happen just for special combination of R, b, h and material prop-
erties.
Let’s remember that the value of w̃max represents a limit value of the midspan
displacement obtained according to a chosen criterion; for this reason it is worth
noting that such criterion does not necessarily imply that the system is com-
pletely plasticised when the midspan displacement reaches w̃max.
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Plotted diagrams

As was done for the case 1, in this section some results of p-i diagrams will be
presented. The results illustrated as follows correspond to circular plates made
in RC and FRC. The geometrical and material properties are assumed as the
same values taken from the dynamic analysis example; however these data are
written inside the figures. The chosen excitation pulse shape is a decreasing
exponential function, with the parameter λ set equal to 5, in order to have a
more realistic representation of a blasting load shape. The value of wmax is
recorded in the figures and corresponds to the threshold displacement.

RC. The following example (figure 5.43) shows the p-i curve generated by
using the algorithms proposed in this work. The geometrical dimensions and RC
material properties were adopted in order to obtain a very flexible plate which
allows for the formation of the negative circular yield line. Gravel (ks = 0.10
GPa/m) was chosen in order to represent the supporting soil.
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Figure 5.43: Case 2.A: example of p-i diagram for a reinforced concrete plate.
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FRC. As follows, an example of the algorithms’ application is performed for
special plate’s characteristics (figure 5.44), which correspond to a possible shock
tube’s sample test. The FRC material properties adopted are taken from ex-
perimental results recorded in the paper Mechanical properties of steel fibre
reinforced concrete exposed to high temperatures (Colombo et al., 2010). Also
here, gravel (ks = 0.10 GPa/m) was chosen in order to represent the supporting
soil.
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Figure 5.44: Case 2.A: example of p-i diagram for a fibre reinforced plate.
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RC. The following example (figure 5.45) shows the p-i curve generated by
using the algorithms proposed in this work. The geometrical dimensions and RC
materials properties were adopted in order to represent a sample for the shock
tube test. Dense sand (ks = 0.03 GPa/m) was chosen in order to represent the
supporting soil.
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Figure 5.45: Case 2.B: example of p-i diagram for a reinforced concrete plate.
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FRC. As follows, an example of the algorithms’ application is performed for
special plate’s characteristics (figure 5.46 ), which correspond to a possible shock
tube’s sample test. The FRC material properties adopted are taken from exper-
imental results recorded in the paper Mechanical properties of steel fibre rein-
forced concrete exposed to high temperatures (Colombo et al., 2010). Also here,
dense sand (ks = 0.03 GPa/m) was chosen in order to represent the supporting
soil.
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Figure 5.46: Case 2.B: example of p-i diagram for a fibre reinforced plate.

Figure 5.47 and table 5.2, which will be presented in the next pages, aim to
summarize all the applications that were solved in the present work, along with
the transformation coefficients and the collapse loads computed for each case.
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Figure 5.47: Review of the application cases.
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Table 5.2: Review of the transformation coefficients for the application cases.

Case Elastic stage coefficients Collapse load Plastic stage coefficients

Case 1 m∗e =
πR2ρh(3ν2 + 36ν + 113)

15(ν + 5)2
Fsu = 6πm0 m∗p =

ρhπR2

6

k∗e =
64πD(ν + 1)(ν + 7)

3R2(ν + 5)2
L∗p =

πR2

3

L∗e =
πR2(ν + 7)

3(ν + 5)

Case 2 m∗e = 2πρh
∑NR

k=1 ψ
2
k k4r2 Case 2.A m∗p =

1

6
ρhπd2

for k∗e see equation 5.140 Fsu =
4πm0

1− 2

3

b

R

R

d
−
(
d

R

)2

+
1

2

(
d

R

)3 L∗p = 2π

(
b2

2
− b3

3d

)

L∗e = 2π
∑Nb

k=1 ψk k4r2 Case 2.B m∗p = πR2 ρ h

(
1

6
+

1

3
ψel(R) +

1

4
ψ2
el(R)

)

Fsu = p0(πb2) =
3πm0

1− b

R

L∗p = 2π

[
b2

2
+

b3

3R
(ψel(R)− 1)

]
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5.4 Sensitivity analysis

In all the examples so far presented only one p-i curve for each diagram has
been plotted; in this section, on the contrary, some diagrams containing more
than one p-i curve will be shown in order to highlight the influence arising
from the variation of different parameters. Actually it is of great interest herein
to understand how and to which extent the variation of a single parameter
can affect the p-i curve in its whole. Some of these diagrams were developed
considering either application case 1 (simply supported slab) or case 2 (slab on
grade); moreover, both FRC and RC were used.

Plates with large dimension of R, under the same charge, are subjected to
large bending moments as occurs analogously with beams, for instance a simply
supported beam, with a uniform distribution q and length l, will have a moment
at the middle span equal to ql2/8, then the bending moment increases when the
longitudinal dimension increases. This fact, for plates, is exposed in figure
5.48, where plates with large values of R are subjected to very large values of
bending moment, therefore the undamaged zone in the p-i diagram decreases
as R increases. On the other hand, large values of the thickness h increase the
plate rigidity and allow to dissipate more energy, as proven by figure 5.49.
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Figure 5.48: Case 1: variation of the plate radius.
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Let’s remember that the simplified elastic-perfectly plastic model used in
this work is an approximation of a hardening behaviour with a plateau ten-
dency. Therefore, the elastic part represents not only the strict elastic phase
but also a partial plasticization coming from the appearance of some yield lines.
The perfectly plastic phase (plateau) represents the entire plasticization of the
system, which means the complete appearance of all yield lines necessary to
reach the structural collapse. But actually the plate’s plasticization has started
further back, in the approximated elastic phase, as was shown in figure 3.1.

Figure 5.48 shows how a plate with a higher value of R is forced to dissipate
less energy and resist less than a plate with a low value of R.
Conversely, figure 5.49 the same argument for a variation of the plate thickness
h. As one would expect, an increase in the plate thickness induces an increase
in its resistance against a blasting phenomenon.
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Figure 5.49: Case 1: variation of the plate thickness.
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By using more resistant materials, it is expected to obtain more resistance
in the overall behaviour of the plate, as it is shown in figure 5.50, in which
the increasing of the cylindrical compressive strength of concrete provides an
increment of the undamaged zone in the p-i diagrams.
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For RC plates, the increment of steel reinforcement area provides a better
performance in the quasi-static domain, but a worse performance in the impul-
sive domain. On the contrary, a decrease in the reinforcement area provides
a better performance in the impulsive domain, namely for blast loadings with
short impulses and high pressures, as it is highlighted in figure 5.51.
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In figure 5.52 two functions are plotted: one was developed taking into ac-
count the partial factors (design curve), and the other one was obtained using
characteristic values. As it was expected, the design curve is under the charac-
teristic one, because the former owns a certain degree of safety. It is interesting
to know how much all different partial factors affect the p-i diagram, giving rise
to an overall factor of safety (FS). Looking at figure 5.52, the difference between
the vertical asymptotes gives a value of FS around 1.4, while analysing the hor-
izontal asymptotes, the FS is around 1.2. Therefore a plate will be a little more
unsafe for large values of impulse than a plate subjected to a high pressure with
short impulse. The design curve will find more application in the design field
whilst the characteristic curve will find more application in the experimental
field, in order to compare experimental and theoretical results. Furthermore, it
is reasonable to expect that experimental results obtained from the shock tube
test will be more likely to fall inside the area enclosed by the design and the
characteristic p-i curves.
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Load pulse shape affects the structure response manly in the quasi-static
and dynamic domains rather than in the impulsive regime. Figure 5.53 shows
how the p-i curves tends more rapidly to the quasi-static asymptote when the
load pulse shape has a greater impulse. Actually, at a same time duration
of the pulse td, a rectangular pulse shape encloses the largest area under the
pressure-time curve, i.e., it has the largest impulse, thus the p-i curve is quickly
led to the horizontal asymptote. The opposite case is illustrated by the general
triangle pulse shape, and all the other assumed pulse shapes appear to fall in
an intermediate position between the two extreme cases.
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A plate supported on a deformable soil (case 2.B) will show a better per-
formance than the one resting on a stiffer ground, due to the fact that a more
deformable soil is able to dissipate more energy for the entire system, increasing
its overall resistance and providing a wider undamaged zone in the p-i diagram.
Figure 5.54 shows this fact for a Winkler soil medium. The values of the soil
Winkler constants assumed in this frame were the following (Bowles, 1968):

• ks = 0.01 GPa/m, representing loose sand;

• ks = 0.03 GPa/m, representing medium dense sand;

• ks = 0.05 GPa/m, representing dense sand.

Furthermore, figure 5.54 shows that the variation of the soil modulus affects
mainly the impulsive and the dynamic domains, whilst negligible influence is
observed for the quasi-static domain. As last remark, it is worth noting that, as
one would expect, higher values of ks provide a smaller penetration of the plate
into the ground. This fact is pointed out in the figure by the wplate+soil values,
which denote the midspan displacement of the overall plate-soil system.
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Finally, always making reference to case 2.B, it is expected that an increment
of the loading area (i.e., of the load radius b) will affect a plate more than a
small loading area, because the total load is also increased. From a p-i diagram
point of view, large charges will reduce the undamaged zone, as it is shown in
figure 5.55.
Note that, as one would expect, higher values of the load radius induce a deeper
embedment of the plate into the ground. This fact is pointed out in the figure
by the wplate+soil values, which denote the midspan displacement of the overall
plate-soil system.
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5.5 Conclusions

The results obtained in this work have essentially two aims. First, they provide
a useful and powerful tool for structural designers, who will be able to imple-
ment the algorithms and p-i graphs in order to design and assess circular plates
subjected to dynamic loads. Second, the results can be used to evaluate and
forecast experiments performed with the shock tube.

As was already mentioned, many codes were developed within the framework
of this work which allowed to perform the dynamic analyses and to work out
the pressure-impulse diagrams that were herein presented. All these codes were
sketched in this thesis as UML diagram representation; however, they are avail-
able in order to perform further analyses and improvements. One of the possible
improvements could be the implementation of the Reissner-Mindlin theory for
moderately thick plates, in order to account for shear effects.

Let’s remember that the p-i diagrams plotted in this work have dimensional
axes, while usually p-i diagrams performed in other works are plotted with non-
dimensional axes in order to obtain comparable scales. Plotting dimensional
p-i diagrams has its advantage, because the user can apply these diagrams in
a direct way, just placing a point representing the desired conditions of pres-
sure and impulse inside the p-i diagram. However, since the ratio between the
vertical and the horizontal axis is very big, traditional algorithms cannot trace
the complete curve. Therefore this work proposed a modification of the tradi-
tional algorithms in order to achieve a complete and well defined curve. This
improvement makes the results more useful in practice.

All the analyses of plates performed in this work considered only the flex-
ural behaviour, thereby the maximum resistance of the system corresponds to
the energy dissipated by flexural plasticization. Therefore, the real experiments
related to this work can be comparable with the theoretical models just in the
case in which the collapse mechanism belongs to a flexural pattern and low
dissipation of energy by shear mechanism takes place. This assumption has a
geometrical connotation, because for values of plate diameter over plate thick-
ness lower than 4 the shear behaviour starts having more interest, as was already
mentioned at the beginning of the second chapter. For situations in which the
shear mechanism of collapse assumes a predominant role more complex analyses
are required, involving theories which take into account the shear behaviour in
a rigorous way.

Note that the representation of the soil using a Winkler elastic medium is
a strong assumption, because generally soils do not behave as purely elastic
materials but as elasto-plastic softening or hardening materials. For the case
2, the soil was modelled as a infinite elastic material and its rupture was not
considered. In the real world, this type of soil does not exist. Therefore, experi-
mental tests may provide results in which the soil plasticity plays an important
role and then the proposed theoretical models are not suitable any more. These
phenomena are likely to happen when the plate is much more rigid than the soil,
consequently for the case 2.B. In any case, the Winkler soil may be adopted in
reality as an artificial elastic material, for instance in presence of a special type
of rubber. In some tunnel structures, the final cover structure is supported
over other previous covering material, and these could be represented as elas-
tic materials and then they could be simulated adequately by Winkler elastic
medium.
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As this work is a tool for structural designers and researchers, several ele-
ments like tables, figures and graphs are provided, that will help the designer or
the researcher in the choice of the right application case according to structure’s
particular conditions. To this aim, figure 5.22 was plotted in order to differen-
tiate if the conditions belong either to a very rigid plate or to a very flexible
plate with respect to the soil rigidity, just knowing the geometrical dimensions
(R, h, b) and the stiffness parameters (ksoil, D) of a plate-soil system.

Finally, other structural elements different from plates could be analysed;
for example, from the point of view of the analysis of tunnels subjected to
explosive loadings, it would be of great interest to treat the problem of the
dynamics of shell structural elements, working out the corresponding pressure-
impulse diagrams.

In conclusion, open windows remain in order to complete, improve and ex-
pand this work. Further studies could take into account thick plates, different
slab shapes, other boundary conditions, different dynamic excitations, elastic-
plastic hardening or softening models, new materials like layered ones, applica-
tion on more global structure like shells and feedbacks from experimental results
aiming to an improvement of the theoretical model.
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