The OpenPose algorithm

Marco Sutti

May 24, 2021

Overview

- ► Realtime multi-person 2D pose estimation.
- Human 2D pose estimation: problem of localizing anatomical keypoints or parts.
 - ► From an image captured with RGB smartphone/tablet camera, use Deep Learning to estimate positions of body joints.
 - Convolutional Neural Network (CNN) that enables to predict location of joints of interest!
- Open source algorithm.

OpenPose: [Cao et al. '17, Cao et al. '21]

OpenPose - Main ideas

- Input: color image of size $w \times h$.
- Output: array of matrices, including:
 - A set of 2D Confidence Maps (CMs) S = (S₁, S₂,..., S_J), where J is the number of parts, and S_j ∈ ℝ^{w×h}, j ∈ {1...J}. → They show the location of parts (e.g., wrist, elbow, knee, etc.).

A set of Part Affinity Fields (PAFs) L = (L₁, L₂,..., L_C), where C is the number of limbs (or part pairs), and L_c ∈ ℝ^{w×h×2}, c ∈ {1...C}. → Set of 2D vector fields that encode the degree of association between parts.

Pipeline

- Input: (a) color image of size $w \times h$.
- Convolutional Neural Network: jointly predicts (b) 2D CMs S for part detection and (c) 2D vector fields L of PAFs for part association.
- Parsing step: (d) performs a set of bipartite matchings to associate body part candidates in order to form limbs.
- Output: (e) assemble the 2D keypoints into full body poses for all people in the image.

Network Architecture

Multi-stage convolutional architecture

• Iteratively predicts PAFs L^t (left branch) and CMs S^t (right).

► Iterative prediction architecture: refines the prediction over successive stages, t ∈ {1,...,T}, with intermediate supervision at each stage.

Iterative prediction architecture: [Wei et al. '16]

Joint Detection and Association/1

- ► The image is analyzed by a CNN, giving a set of feature maps **F**.
- First stage: $L^1 = \phi^1(F)$, where ϕ^1 is the CNN for inference at Stage 1.
- Subsequent stages: concatenation of the PAF predictions L^{t-1} and the original F to produce refined predictions:

$$\mathbf{L}^t = \phi^t(\mathbf{F}, \mathbf{L}^{t-1}), \quad 2 \leqslant t \leqslant T_P,$$

where ϕ^t refers to CNNs for inference at Stage *t*, and T_P is the total number of PAFs stages.

Joint Detection and Association/2

After T_P iterations, the process is repeated for the CMs detection, starting with the most updated PAF prediction, L^{T_P}:

$$\mathbf{S}^{T_P} = \rho^{T_P}(\mathbf{F}, \mathbf{L}^{T_P}),$$

$$\mathbf{S}^t = \rho^t(\mathbf{F}, \mathbf{L}^{T_P}, \mathbf{S}^{t-1}), \quad T_P < t \leqslant T_P + T_C,$$

where ρ^t refers to CNNs for inference at Stage *t*, and T_C is the total number of CM stages.

Remark: Refined PAF predictions improve the CM results (the opposite does not hold).

Loss Functions

- To guide the network to predict PAFs in the first branch and CMs in the second branch, we apply a loss function at the end of each stage.
- ► *L*₂ loss between estimated predictions and groundtruth fields and maps.
- Loss function of the PAF branch at stage t_i:

$$f_{\mathbf{L}}^{t_i} = \sum_{\substack{c=1\\ \text{sum over}\\ \text{all limbs}}}^{C} \sum_{\mathbf{p}} \mathbf{W}(\mathbf{p}) \cdot \|\mathbf{L}_c^{t_i}(\mathbf{p}) - \mathbf{L}_c^*(\mathbf{p})\|_2^2.$$

Loss function of the CM branch at stage t_k:

$$f_{\mathbf{S}}^{t_k} = \sum_{\substack{j=1\\\text{sum over}\\\text{all parts}}}^J \sum_{\mathbf{p}} \mathbf{W}(\mathbf{p}) \cdot \|\mathbf{S}_j^{t_k}(\mathbf{p}) - \mathbf{S}_j^*(\mathbf{p})\|_2^2.$$

- W is a binary mask with $W(\mathbf{p}) = 0$ when the annotation is missing at the pixel \mathbf{p} .
- Overall objective:

$$f = \sum_{t=1}^{T_p} f_{\mathbf{L}}^t + \sum_{t=T_p+1}^{T_p+T_C} f_{\mathbf{S}}^t.$$

Confidence Maps for Part Detection/1

- ► Training: to evaluate *f*_S, generate groundtruth CMs S* from the annotated 2D keypoints.
- Confidence map (CM): 2D representation of the belief that a particular body part can be located in any given pixel.
 - ► If single person in image: single peak should exist in each CM if the corresponding part *j* is visible.
 - If multiple people: there should be a peak corresponding to each visible part *j* for each person *k*:

Confidence Maps for Part Detection/2

For each person k, we generate individual groundtruth CMs $\mathbf{S}_{i,k}^*$

$$\mathbf{S}_{j,k}^*(\mathbf{p}) = \exp\left(-\frac{\|\mathbf{p} - \mathbf{x}_{j,k}\|_2^2}{\sigma^2}\right),\,$$

with $\mathbf{x}_{j,k}$ groundtruth position of body part *j* for person *k*, σ^2 variance.

Groundtruth CM for part *j*: to evaluate *f*_S, aggregation of the individual groundtruth CMs via a max operator:

$$\mathbf{S}_{j}^{*}(\mathbf{p}) = \max_{k} \mathbf{S}_{j,k}^{*}(\mathbf{p}).$$

Max vs average: taking the max of the CMs instead of their average allows to keep distinct the nearby peaks:

Part Affinity Fields for Part Association/1

Given a set of detected body parts, how do we assemble them to form the limbs of an unknown number of people?

↔ Part Affinity Fields (PAFs).

► They encode both location and orientation over the support of the limb.

• Each PAF is a 2D vector field for each limb.

- ► For each **p** in the area belonging to a given limb, a 2D vector encodes the direction that points from one part of the limb to the other.
- Each limb has a corresponding PAF joining its two associated body parts.

Part Affinity Fields for Part Association/2

Consider a single limb *c*:

- ▶ $\mathbf{x}_{j_1,k}$ and $\mathbf{x}_{j_2,k}$ groundtruth positions of body part j_1 (right elbow •) and j_2 (right wrist •) from the limb *c* for person *k*.
- ► Training: to evaluate f_L, define the groundtruth PAF L^{*}_{c,k} at an image point p as

$$\mathbf{L}_{c,k}^*(\mathbf{p}) = \begin{cases} \mathbf{v} & \text{if } \mathbf{p} \text{ is on limb } c, \text{ for person } k, \\ \mathbf{0} & \text{otherwise}, \end{cases} \qquad \mathbf{v} = \frac{\mathbf{x}_{j_2,k} - \mathbf{x}_{j_1,k}}{\|\mathbf{x}_{j_2,k} - \mathbf{x}_{j_1,k}\|_2}.$$

Groundtruth PAF for limb c: average of the groundtruth PAFs of all people in the image, i.e.,

$$\mathbf{L}_{c}^{*}(\mathbf{p}) = \frac{1}{n_{c}(\mathbf{p})} \sum_{k} \mathbf{L}_{c,k}^{*}(\mathbf{p}),$$

where $n_c(\mathbf{p})$ is the number of nonzero vectors at \mathbf{p} across all k people.

Part Affinity Fields for Part Association/3

• Testing: we measure the association between two candidate part locations \mathbf{d}_{j_1} and \mathbf{d}_{j_2} by computing the line integral of the corresponding PAF along the line segment connecting \mathbf{d}_{j_1} and \mathbf{d}_{j_2} ,

$$E = \int_{u=0}^{u=1} \mathbf{L}_{c}(\mathbf{p}(u)) \cdot \frac{\mathbf{d}_{j_{2}} - \mathbf{d}_{j_{1}}}{\|\mathbf{d}_{j_{2}} - \mathbf{d}_{j_{1}}\|_{2}} \, \mathrm{d}u,$$

where $\mathbf{p}(u)$ is the parametrized segment connecting \mathbf{d}_{j_1} and \mathbf{d}_{j_2}

$$\mathbf{p}(u) = (1-u)\mathbf{d}_{j_1} + u\mathbf{d}_{j_2}$$

→ This gives a score for each candidate limb.

How do we handle the case of multiple people in the same image?

► Due to multiple people in the image, we may have several candidates for each part (Fig. (a)). Example: we have two candidates for both *j*₁ (left shoulder ●), *j*₂ (left hand ●), and *j*₃ (left elbow ●).

 Each candidate is scored using the line integral computation on the PAF, i.e.,

$$E = \int_{u=0}^{u=1} \mathbf{L}_{c}(\mathbf{p}(u)) \cdot \frac{\mathbf{d}_{j_{2}} - \mathbf{d}_{j_{1}}}{\|\mathbf{d}_{j_{2}} - \mathbf{d}_{j_{1}}\|_{2}} \, \mathrm{d}u.$$

- ► Finding the optimal parse is a *K*-dimensional matching problem that is known to be NP-Hard (Fig. (c)).
- OpenPose uses a greedy relaxation that produces high-quality matches.

• Set of body part detection candidates for multiple people:

$$\mathcal{D}_{\mathcal{J}} = \{\mathbf{d}_j^m \colon \text{for } j \in \{1 \dots J\}, m \in \{1 \dots N_j\}\}.$$

► Find the pairs of part detection candidates that are connected limbs.

- ► $z_{j_1j_2}^{mn} \in \{0, 1\}$ indicates whether two detection candidates $\mathbf{d}_{j_1}^m$ and $\mathbf{d}_{j_2}^n$ are connected. Example: $z_{j_2j_3}^{12}$ for $\mathbf{d}_{j_2}^1$ and $\mathbf{d}_{j_3}^2$.
- ► Goal: find the optimal assignment for the set of all possible connections

$$\mathcal{Z} = \{z_{j_1 j_2}^{mn} \colon \text{for } j_1, j_2 \in \{1 \dots J\}, m \in \{1 \dots N_{j_1}\}, n \in \{1 \dots N_{j_2}\}\}.$$

• Consider a single pair of parts j_1 and j_2 for the *c*th limb.

- Nodes of the graph: sets of body part detection candidates D_{j_1} and D_{j_2} .
- Edges: all possible connections between pairs of detection candidates. Plus: each edge is weighted by the affinity score E_{mn} .
- Finding the optimal association reduces to a maximum weight bipartite graph matching problem.

 \rightsquigarrow A bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets *U* and *V* such that every edge connects a vertex in *U* to one in *V*.

 \rightsquigarrow Matching: subset of the edges chosen s.t. no two edges share a node.

► Goal: find a matching with maximum weight for the chosen edges, i.e.,

$$\max_{\mathcal{Z}_c} E_c = \max_{\mathcal{Z}_c} \sum_{m \in \mathcal{D}_{j_1}} \sum_{n \in \mathcal{D}_{j_2}} E_{mn} \cdot z_{j_1 j_2}^{mn},$$

$$\text{s.t.} \quad \forall m \in \mathcal{D}_{j_1}, \sum_{n \in \mathcal{D}_{j_2}} z_{j_1 j_2}^{mn} \leqslant 1, \qquad \forall n \in \mathcal{D}_{j_2}, \sum_{m \in \mathcal{D}_{j_1}} z_{j_1 j_2}^{mn} \leqslant 1,$$

where E_c : overall weight of the matching for limb type c, Z_c : subset of Z for limb type c, E_{mn} : part affinity score between parts \mathbf{d}_{j_1} and \mathbf{d}_{j_2} .

- The two inequalities enforce that no two edges share a node, i.e., no two limbs of the same type share a body part.
- Determining \mathcal{Z} is a NP-Hard problem.

 \rightsquigarrow Add two relaxations to the optimization.

↔ Add two relaxations to the optimization problem:

- Choose a minimal number of edges to obtain a spanning tree skeleton (c) rather than using the complete graph.
- (2) Decompose the matching problem into a set of bipartite matching subproblems (d).
 → We obtain the limb connection candidates for each limb type independently.

 \rightsquigarrow With all limb connection candidates, we can assemble the connections that share the same part detection candidates into full-body poses.

Examples

~~> Latest portable version of OpenPose for Windows from https://github.com/CMU-Perceptual-Computing-Lab/openpose.

Conclusions

- Open source.
- Efficient while preserving accuracy.
- ► Uses 2D videos/images instead of 3D.

References:

- [1] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, "OpenPose: realtime multi-person 2D pose estimation using part affinity fields", IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 172–186, Jan. 2021.
- [2] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, "Realtime multi-person 2D pose estimation using part affinity fields", in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 1302–1310.

谢谢!