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I. EfficientHRNet



Overview

I Real-time multi-person 2D pose estimation.

I Scalable algorithm.

I Highly accurate models while reducing computation.

I Lightweight bottom-up method   execution under constrained
computational resources (e.g., IoT devices).

EfficientHRNet: [Neff et al. ’20]
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EfficientHRNet – Main ideas

I EfficientHRNet unifies EfficientNet + HRNet principles.

I Like HRNet, it uses multiple resolutions of features

I Uses EfficientNet as a backbone and adapts its scaling methodology   
Scale below the baseline resolution B0 + Jointly scale down the input
resolutions, High-Resolution Network, and Heatmap Prediction Network.

I Compound scaling inspired by EfficientNet, jointly scales the width,
depth and input resolution of EfficientHRNet.

I This leads to a family of lightweight and scalable networks flexible
towards accuracy and computation requirements.
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Network architecture
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Backbone Network

I First stage: Backbone, it is a modified EfficientNet.
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High-Resolution Network

I Main body: High-Resolution Network.
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High-Resolution Network

I It has three stages s1, s2, and s3,
containing four parallel branches
b1, b2, b3, and b4 of different
resolutions.

I The first stage starts with 2 branches,
with each consecutive stage adding
an additional branch.

I Each branch bn consists of high
resolution modules with a width of
Wbn , and contains feature
representations of decreasing
resolutions

Wbn ×
Rinput

2n+1 ,

where Rinput is the original input
resolution.
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High-Resolution Network
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Heatmap Prediction Network

I Heatmap Prediction Network: used to generate human keypoint
predictions.
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Heatmap Prediction Network
I To predict more accurate

heatmaps, a DeConv block is
added.

I Input to the DeConv block:
concatenation of features maps
and predicted heatmaps from the
High-Resolution Network.

I Two residual blocks are added
after the deconvolution to refine
the up-sampled feature maps.

I 1x1 convolution is used to predict
tagmaps and heatmaps:

Tsize = 34× Rinput

4
× Rinput

4
,

Hsize = 17× Rinput

2
× Rinput

2
.

I Heatmaps loss: sum of MSEs for
all resolutions.
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Compound Scaling

I Jointly scales all part of EfficientHRNet to meet a diverse set of
memory and compute constraints.

I Heuristic-based compound scaling methodology.

I EfficientHRNet uses a scaling coefficient φ to jointly scale:

I the Backbone Network,

I the High-Resolution Network,

I the Task-Specific Head.
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Compound Scaling/Backbone Network

I The EfficientNet backbone is scaled below the baseline.

I Starting with the baseline EfficientNet-B0 scaling coefficients:

I depth: d = 1.2φ,

I width: w = 1.1φ,

I resolution: r = 1.15φ,

φ = −1, −2, −3, −4 is used to calculate the scaling multipliers for the
compact EfficientNet models B−1, B−2, B−3, and B−4.

I Example:
To scale the baseline resolution 224
down for our B−1 model, we take r with
φ = −1:

ceil(224 · 1.15−1) = 195.
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Compound Scaling/High-Resolution Network

I The baseline H0 has width of 32, 64, 128, 256 for each branch n,
respectively.

I Scale them down with a width scaling factor of 1.25:

Wbn = (n · 32) · (1.25)φ.

I Example: For n = 1, φ = −1, we get

Wbn = (1 · 32) · (1.25)−1 = 32/1.25 ≈ 26.

I The input resolution of EfficientHRNet is linearly scaled down:

Rinput = 512 + 32 · φ.
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Experiments/2D Human Pose Estimation

Comparison of EfficientHRNet with other bottom-up pose estimation
methods on COCO2017 test-dev set (a subset of test with 20k images used for
fair comparison with other works).

I The baseline H0 model w/o
multi-scale test vs HRNet: only
0.1% decrease in accuracy, but
1− 23.3/28.5 ≈ 18% reduction in
parameters and
1− 25.6/38.9 ≈ 34% in FLOPs!

I The H−1 model outperforms both
OpenPose and Hourglass.

I As EfficientHRNet is scaled down,
we see minor drops in accuracy
with significant drops in
parameters and FLOPs as
compared to H0.

I The lightest model H−4 w.r.t. H0 is 1− 3.7/23.3 ≈ 84% smaller and has
1− 2.1/25.6 ≈ 91.7% less FLOPs, and 27.4% drop in accuracy.
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Experiments/2D Human Pose Estimation

Comparison of EfficientHRNet with other bottom-up pose estimation
methods on COCO2017 test-dev set (a subset of test with 20k images used for
fair comparison with other works).
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Experiments/Real-Time Execution on IoT Edge Devices
Compare accuracy and efficiency across differing platforms.

I Accuracy · Efficiency (Æ) metric: product of accuracy (measured in
AP) and efficiency (measured in FPS per Watt).

I EfficientHRNet outperforms the competition between 3x to 5x.

I HigherHRNet excels in accuracy and Lightweight OpenPose excels in
FPS and model size, while EfficientHRNet is more equally balanced
between accuracy, model size, throughput, and power consumption.

I This makes EfficientHRNet the state-of-the-art method for
lightweight bottom-up human pose estimation for real-time edge
applications.
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II. Lite-HRNet



Lite-HRNet

I First, combine the shuffle block in ShuffleNet and the high-resolution
design pattern in HRNet.

   naive Lite-HRNet.

I Second, introduce an efficient conditional channel weighting to
replace the costly pointwise (1× 1) convolutions in shuffle blocks.

   Lite-HRNet.

I It computes the weights from all the channels and uses them as a bridge to
exchange information across channels and resolutions.

I Reduction in computational complexity!

Lite-HRNet: [Yu et al. ’21]
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Naive Lite-HRNet/Shuffle Blocks

I The shuffle block in ShuffleNet V2
first splits the channels into two
partitions.
I One partition passes through a

sequence of 1× 1 convolution,
3× 3 depthwise convolution, and
1× 1 convolution.

I The output is concatenated with
the other partition.

I Finally, the concatenated channels
are shuffled.

ShuffleNet: [Ma et al. ’18]
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Naive Lite-HRNet/HRNet

I First stage: high-resolution convolution stem. Consists of two 3× 3
convolutions.

I Adds high-to-low resolution streams one by one as new stages.

I The multi-resolutions streams are connected in parallel.

I The output is concatenated with the other partition.

I Main body: sequence of stages. In each stage:

I the information across resolutions is exchanged repeatedly;

I a sequence of residual blocks and one multi-resolution fusion.

HRNet: [Wang et al. ’19]
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Naive Lite-HRNet/Simple Combination
   Shuffle blocks + HRNet = Naive Lite-HRNet

I Use the shuffle block to replace:
I the second 3× 3 convolution in

the stem of HRNet;
I all the normal residual blocks

(formed with two 3× 3
convolutions).
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Lite-HRNet

I Motivation: 1× 1 convolution is costly, since it performs a
matrix-vector multiplication at each position:

Y = W⊗ X,

where X and Y are input and output maps, and W is the 1× 1
convolutional kernel.

I It serves the critical role of exchanging information across channels.

I It has quadratic time complexity Θ(C2) w.r.t. C, the number of
channels.
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Lite-HRNet/Conditional Channel Weighting (CCW)

I Use the element-wise weighting
operation to replace the 1× 1
convolution in naive Lite-HRNet.

I Element-wise weighting operation
for the sth resolution branch:

Ys = Ws � Xs,

where Ws ∈ RWs×Hs×Cs is a weight
map, and Xs ∈ RHs×Ws×Cs is the input
channel map for the s resolution.

I It has linear complexity Θ(C).

I We compute the weights by using the
channels for a single resolution and
the channels across all the
resolutions.

I Weights play a role of exchanging
information across channels and
resolutions.
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Experiments
Complexity and accuracy comparison of Lite-HRNet on the COCO and
MPII datasets.

I Compared to MobileNetV2, Lite-HRNet-30 improves AP by 2.6 points, with only
20% GFLOPs and parameters!

I Compared to ShuffleNetV2, Lite-HRNet-18 and Lite-HRNet-30 improve AP by
4.9 and 7.3 points, with only 15% and 24% GFLOPs and parameters!
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Conclusion

This talk:

I EfficientHRNet and Lite-HRNet: lightweight and high resolution networks,
for human body pose estimation.

I Both can be deployed on resource-constrained, very low power devices.

I High degree of flexibility due to their scalable structure.

Thank you for listening!
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III. Bonus material



Experiments/Classification for EfficientNet
Compact EfficientNet performance on ImageNet and CIFAR-100 datasets.

I Looking at B−1 there are:
I a 1− 4.5/5.3 ≈ 15% reduction in parameters;
I a 1− 0.3/0.4 = 25% reduction in operations;
I yet an accuracy drop of only 1.2% and 0.5% on ImageNet and CIFAR-100,

respectively.

I In the most extreme, B−4 shows:
I a 1− 1.3/5.3 ≈ 75% reduction in parameters;
I a 1− 0.05/0.4 = 87.5% reduction in operations;
I with an accuracy drop of 9.4% and 7.6% on ImageNet and CIFAR-100,

respectively.

   The massive reduction in computation allows for great flexibility.



Lite-HRNet/Structure of Lite-HRNet



Lite-HRNet/Cross-Resolution Weight Computation

Example of complexity comparison between 1× 1 convolutions and
depthwise convolutions.



Lite-HRNet/Cross-Resolution Weight Computation/1

I Considering the s stage, there are s parallel resolutions, and s weight
maps W1,W2, . . . ,Ws.

I We compute the s weight maps from all the channels across resolutions
using a lightweight function Hs:

(W1,W2, . . . ,Ws) = Hs(X1,X2, . . . ,Xs),

where {X1,X2, . . . ,Xs} are the input maps for the s resolutions. X1  
highest resolution, X2  sth highest resolution.



Lite-HRNet/Cross-Resolution Weight Computation/2

Implementation of the lightweight function Hs:

I Perform adaptive average pooling (AAP) on {X1,X2, . . . ,Xs−1}:

X′1 = AAP(X1), X′2 = AAP(X2), . . . , X′s−1 = AAP(Xs−1).

   AAP pools any input size to a given output size Ws × Hs.

I Concatenate {X′1,X
′
2, . . . ,X

′
s−1} and Xs together, followed by a 1× 1

convolution, ReLU, 1× 1 convolution, and sigmoid, generating weight
maps consisting of s partitions, W′1,W

′
2, . . . ,Ws:

(X′1,X
′
2, . . . ,Xs)→ Conv.→ ReLU→ Conv.→ σ → (W′1,W

′
2, . . . ,Ws).

I The s− 1 weight maps W′1,W
′
2, . . . ,W

′
s−1 are upsampled to the

corresponding resolutions, outputting W1,W2, . . . ,Ws−1 for the
subsequent element-wise channel weighting.


