EfficientHRNet and Lite-HRNet

Marco Sutti

June 28, 2021

I. EfficientHRNet

Overview

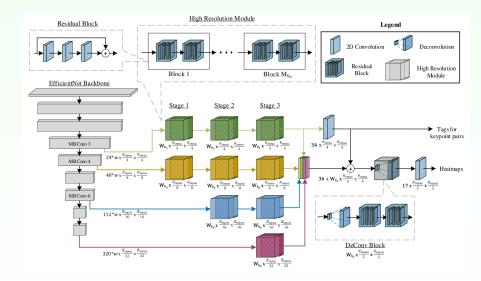
- ► Real-time multi-person **2D pose estimation**.
- ► Scalable algorithm.
- Highly accurate models while reducing computation.
- ► Lightweight bottom-up method ~ execution under constrained computational resources (e.g., IoT devices).

EfficientHRNet – Main ideas

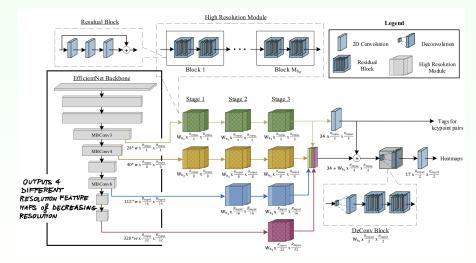
• EfficientHRNet unifies EfficientNet + HRNet principles.

- Like **HRNet**, it uses **multiple resolutions** of features
- ► Uses EfficientNet as a backbone and adapts its scaling methodology → Scale below the baseline resolution B0 + Jointly scale down the input resolutions, High-Resolution Network, and Heatmap Prediction Network.
- Compound scaling inspired by EfficientNet, jointly scales the width, depth and input resolution of EfficientHRNet.
- This leads to a family of lightweight and scalable networks flexible towards accuracy and computation requirements.

Network architecture

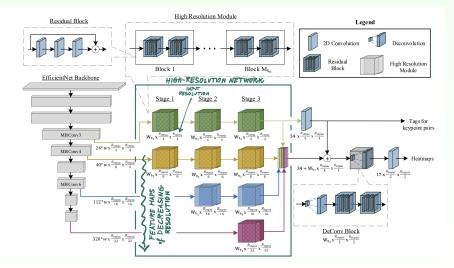


Backbone Network



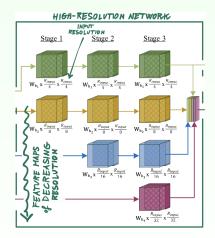
First stage: Backbone, it is a modified EfficientNet.

High-Resolution Network



► Main body: High-Resolution Network.

High-Resolution Network

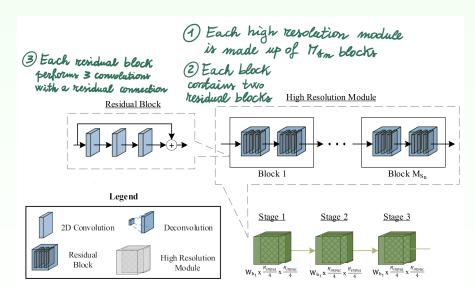


- ► It has three stages s₁, s₂, and s₃, containing four parallel branches b₁, b₂, b₃, and b₄ of different resolutions.
- The first stage starts with 2 branches, with each consecutive stage adding an additional branch.
- Each branch b_n consists of high resolution modules with a width of W_{b_n}, and contains feature representations of decreasing resolutions

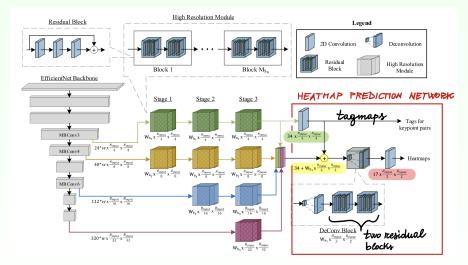
$$W_{b_n} imes rac{R_{input}}{2^{n+1}},$$

where *R*_{*input*} is the original input resolution.

High-Resolution Network

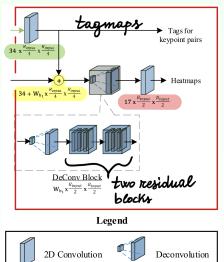


Heatmap Prediction Network



Heatmap Prediction Network: used to generate human keypoint predictions.

Heatmap Prediction Network



High Resolution

Module

Residual

Block

- To predict more accurate heatmaps, a *DeConv block* is added.
- Input to the *DeConv block*: concatenation of features maps and predicted heatmaps from the High-Resolution Network.
- Two residual blocks are added after the deconvolution to refine the up-sampled feature maps.
- 1x1 convolution is used to predict tagmaps and heatmaps:

$$T_{size} = 34 imes rac{R_{input}}{4} imes rac{R_{input}}{4},$$

$$H_{size} = 17 imes rac{R_{input}}{2} imes rac{R_{input}}{2}$$

• Heatmaps loss: sum of MSEs for all resolutions.

Compound Scaling

- Jointly scales all part of EfficientHRNet to meet a diverse set of memory and compute constraints.
- ► Heuristic-based compound scaling methodology.
- EfficientHRNet uses a scaling coefficient ϕ to jointly scale:
 - the Backbone Network,
 - the High-Resolution Network,
 - ► the Task-Specific Head.

Compound Scaling/Backbone Network

- ► The EfficientNet backbone is scaled below the baseline.
- ► Starting with the baseline **EfficientNet-B0** scaling coefficients:
 - *depth*: $d = 1.2^{\phi}$,
 - width: $w = 1.1^{\phi}$,
 - resolution: $r = 1.15^{\phi}$,

 $\phi = -1, -2, -3, -4$ is used to calculate the scaling multipliers for the **compact EfficientNet** models B_{-1}, B_{-2}, B_{-3} , and B_{-4} .

► Example:

To scale the baseline resolution 224 down for our B_{-1} model, we take r with $\phi = -1$:

	Input
Model	size
B0	224
B_{-1}	195
B_{-2}	170
B_{-3}	145
B_{-4}	128

 $ceil(224 \cdot 1.15^{-1}) = 195.$

Compound Scaling/High-Resolution Network

- The baseline H_0 has width of 32, 64, 128, 256 for each branch n, respectively.
- Scale them down with a *width* scaling factor of 1.25:

$$W_{b_n}=(n\cdot 32)\cdot (1.25)^{\phi}.$$

• **Example**: For
$$n = 1$$
, $\phi = -1$, we get

$$W_{b_n} = (1 \cdot 32) \cdot (1.25)^{-1} = 32/1.25 \approx 26.$$

► The input resolution of EfficientHRNet is linearly scaled down:

$$R_{input} = 512 + 32 \cdot \phi.$$

Model	Input Size	Backbone	Width per Branch	Blocks per Stage	Tags	Heatmaps
	$ $ (R_{input})	Network	$(W_{b_1}, W_{b_2}, W_{b_3}, W_{b_4})$	$(M_{s_2}, M_{s_3}, M_{s_4})$	(T_{size})	(H_{size})
$H_0 \ (\phi = 0)$	512	<i>B</i> 0	32, 64, 128, 256	1, 4, 3	128	256
$H_{-1} (\phi = -1)$	480	B_{-1}	26, 52, 103, 206	1, 3, 3	120	240
$H_{-2} (\phi = -2)$	448	B_{-2}	21, 42, 83, 166	1, 2, 3	112	224
$H_{-3} (\phi = -3)$	416	B_{-3}	17, 34, 67, 133	1, 1, 3	104	208
$H_{-4} (\phi = -4)$	384	B_{-4}	14, 27, 54, 107	1, 1, 2	96	192

Experiments/2D Human Pose Estimation

Comparison of EfficientHRNet with other bottom-up pose estimation methods on COCO2017 *test-dev* set (a subset of *test* with 20k images used for fair comparison with other works).

Input							
Method	Backbone	size	# Params	FLOPs	AP		
w/o multi-scale test							
OpenPose	-	-	25.94M	160B	61.8		
Hourglass	Hourglass	512	277.8M	206.9B	56.6		
PersonLab	ResNet-152	1401	68.7M	405.5B	66.5		
PifPaf	ResNet-152	-	-	-	66.7		
HRNet	HRNet-W32	512	28.5M	38.9B	64.1		
HigherHRNet	HRNet-W32	512	28.6M	47.9B	66.4		
HigherHRNet	HRNet-W48	640	63.8M	154.3B	68.4		
H ₀	<i>B</i> 0	512	23.3M	25.6B	64.0		
H_{-1}	B_{-1}	480	16M	14.2B	59.1		
H_{-2}	B_{-2}	448	10.3M	7.7B	52.8		
H_{-3}	B_{-3}	416	6.9M	4.2B	44.5		
H_{-4}	B_{-4}	384	3.7M	2.1B	35.5		
	w/ m	ulti-scale	test				
Hourglass	Hourglass	512	277.8M	206.9B	63.0		
Hourglass	Hourglass	512	277.8M	206.9B	65.5		
PersonLab	ResNet-152	1401	68.7 M	405.5B	68.7		
HigherHRNet	HRNet-W48	640	63.8M	154.3B	70.5		
H ₀	<i>B</i> 0	512	23.3M	25.6B	67.1		
H_{-1}	B_{-1}	480	16M	14.2B	62.3		
H_{-2}	B_{-2}	448	10.3M	7.7B	55.0		
H_{-3}	B_{-3}	416	6.9M	4.2B	45.5		
H_{-4}	B_{-4}	384	3.7M	2.1B	39.7		

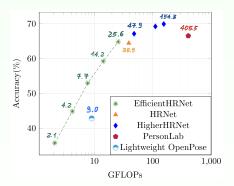
- The baseline H₀ model w/o multi-scale test vs HRNet: only 0.1% decrease in accuracy, but 1 - 23.3/28.5 ≈ 18% reduction in parameters and 1 - 25.6/38.9 ≈ 34% in FLOPs!
- ► The H₋₁ model outperforms both OpenPose and Hourglass.
- As EfficientHRNet is scaled down, we see minor drops in accuracy with significant drops in parameters and FLOPs as compared to H₀.

The lightest model H_{-4} w.r.t. H_0 is $1 - 3.7/23.3 \approx 84\%$ smaller and has $1 - 2.1/25.6 \approx 91.7\%$ less FLOPs, and 27.4% drop in accuracy.

Experiments/2D Human Pose Estimation

Comparison of EfficientHRNet with other bottom-up pose estimation methods on COCO2017 *test-dev* set (a subset of *test* with 20k images used for fair comparison with other works).

		Input					
Method	Backbone	size	# Params	FLOPs	AP		
w/o multi-scale test							
OpenPose	-	-	25.94M	160B	61.8		
Hourglass	Hourglass	512	277.8M	206.9B	56.6		
PersonLab	ResNet-152	1401	68.7M	405.5B	66.5		
PifPaf	ResNet-152	-	-	-	66.7		
HRNet	HRNet-W32	512	28.5M	38.9B	64.1		
HigherHRNet	HRNet-W32	512	28.6M	47.9B	66.4		
HigherHRNet	HRNet-W48	640	63.8M	154.3B	68.4		
H ₀	<i>B</i> 0	512	23.3M	25.6B	64.0		
H_{-1}	B_{-1}	480	16M	14.2B	59.1		
H_{-2}	B_{-2}	448	10.3M	7.7B	52.8		
H_{-3}	B_{-3}	416	6.9M	4.2B	44.5		
H_{-4}	B_{-4}	384	3.7M	2.1B	35.5		
	w/ m	ulti-scale	test				
Hourglass	Hourglass	512	277.8M	206.9B	63.0		
Hourglass	Hourglass	512	277.8M	206.9B	65.5		
PersonLab	ResNet-152	1401	68.7M	405.5B	68.7		
HigherHRNet	HRNet-W48	640	63.8M	154.3B	70.5		
H ₀	<i>B</i> 0	512	23.3M	25.6B	67.1		
H_{-1}	B_{-1}	480	16M	14.2B	62.3		
H_{-2}	B_{-2}	448	10.3M	7.7B	55.0		
H_{-3}	B_{-3}	416	6.9M	4.2B	45.5		
H_{-4}	B_{-4}	384	3.7M	2.1B	39.7		



Experiments/Real-Time Execution on IoT Edge Devices

Compare accuracy and efficiency across differing platforms.

• Accuracy · Efficiency (Æ) metric: product of accuracy (measured in AP) and efficiency (measured in FPS per Watt).

Model	AP	FPS	Efficiency	Æ
HigherHRNet	67.1	6.68	0.445	29.850
Lightweight OpenPose	42.8	26	0.578	24.738
$H_0 \ (\phi = 0)$	64.8	22.95	1.530	99.144
$H_{-1} (\phi = -1)$	59.2	20.43	1.362	80.630
$H_{-2} (\phi = -2)$	52.9	24.53	1.635	86.492
$H_{-3} (\phi = -3)$	44.8	33.78	2.252	100.89
$H_{-4} \ (\phi = -4)$	35.7	50.96	3.397	121.273

- EfficientHRNet outperforms the competition between 3x to 5x.
- HigherHRNet excels in accuracy and Lightweight OpenPose excels in FPS and model size, while EfficientHRNet is more equally balanced between accuracy, model size, throughput, and power consumption.
- This makes EfficientHRNet the state-of-the-art method for lightweight bottom-up human pose estimation for real-time edge applications.

II. Lite-HRNet

Lite-HRNet

First, combine the shuffle block in ShuffleNet and the high-resolution design pattern in HRNet.

→ naive Lite-HRNet.

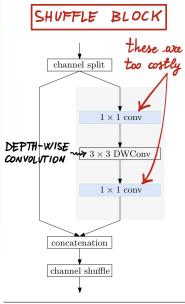
Second, introduce an efficient conditional channel weighting to replace the costly pointwise (1 × 1) convolutions in shuffle blocks.

→ Lite-HRNet.

- It computes the weights from all the channels and uses them as a bridge to exchange information across channels and resolutions.
- Reduction in computational complexity!

Lite-HRNet: [Yu et al. '21]

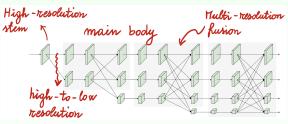
Naive Lite-HRNet/Shuffle Blocks



- The shuffle block in ShuffleNet V2 first splits the channels into two partitions.
 - One partition passes through a sequence of 1 × 1 convolution, 3 × 3 depthwise convolution, and 1 × 1 convolution.
 - The output is **concatenated** with the other partition.
- Finally, the concatenated channels are shuffled.

ShuffleNet: [Ma et al. '18]

Naive Lite-HRNet/HRNet

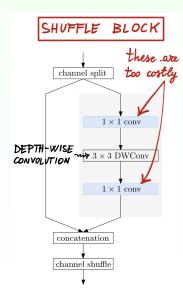


- ► First stage: high-resolution convolution stem. Consists of two 3 × 3 convolutions.
- Adds high-to-low resolution streams one by one as new stages.
 - ► The multi-resolutions streams are connected in parallel.
 - ► The output is concatenated with the other partition.
- ► Main body: sequence of stages. In each stage:
 - the information across resolutions is exchanged repeatedly;
 - a sequence of residual blocks and one multi-resolution fusion.

HRNet: [Wang et al. '19]

Naive Lite-HRNet/Simple Combination

→ Shuffle blocks + HRNet = Naive Lite-HRNet



High - resolution Hulti-resolution husion stim main body Tesolution

- ► Use the **shuffle block** to replace:
 - the second 3 × 3 convolution in the stem of HRNet;
 - all the normal residual blocks (formed with two 3 × 3 convolutions).

Lite-HRNet

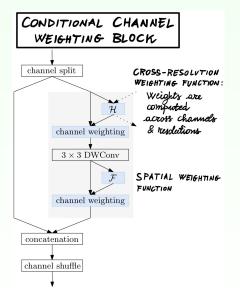
Motivation: 1 × 1 convolution is costly, since it performs a matrix-vector multiplication at each position:

$$\mathsf{Y} = \mathbf{W} \otimes \mathsf{X},$$

where X and Y are input and output maps, and W is the 1×1 convolutional kernel.

- ► It serves the critical role of **exchanging information across channels**.
- It has **quadratic time complexity** $\Theta(C^2)$ w.r.t. *C*, the number of channels.

Lite-HRNet/Conditional Channel Weighting (CCW)



- ► Use the element-wise weighting operation to replace the 1 × 1 convolution in naive Lite-HRNet.
- Element-wise weighting operation for the *s*th resolution branch:

 $\mathsf{Y}_s = \mathsf{W}_s \odot \mathsf{X}_s,$

where $W_s \in \mathbb{R}^{W_s \times H_s \times C_s}$ is a weight map, and $X_s \in \mathbb{R}^{H_s \times W_s \times C_s}$ is the input channel map for the *s* resolution.

- It has **linear complexity** $\Theta(C)$.
- We compute the weights by using the channels for a single resolution and the channels across all the resolutions.
- Weights play a role of exchanging information across channels and resolutions.

Experiments

Complexity and accuracy comparison of Lite-HRNet on the COCO and MPII datasets.

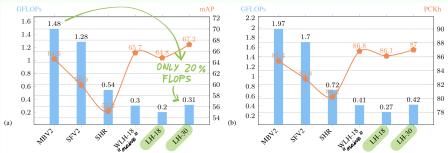


Figure 4. Illustration of the complexity and accuracy comparison on the COCO val and MPII val sets. (a) Comparison on COCO val with 256×192 input size. (b) Comparison on MPII val with 256×256 input size. MBV2= MobileNet V2. SFV2= ShuffleNet V2. SHR= Small HRNet-W16. (W)LH= (Wider Naive) Lite-HRNet.

- Compared to MobileNetV2, Lite-HRNet-30 improves AP by 2.6 points, with only 20% GFLOPs and parameters!
- Compared to ShuffleNetV2, Lite-HRNet-18 and Lite-HRNet-30 improve AP by 4.9 and 7.3 points, with only 15% and 24% GFLOPs and parameters!

Conclusion

This talk:

- EfficientHRNet and Lite-HRNet: lightweight and high resolution networks, for human body pose estimation.
- ► Both can be deployed on **resource-constrained**, **very low power devices**.
- ► High degree of flexibility due to their scalable structure.

Thank you for listening!

III. Bonus material

Experiments/Classification for EfficientNet

Compact EfficientNet performance on ImageNet and CIFAR-100 datasets.

- Looking at B_{-1} there are:
 - a $1 4.5/5.3 \approx 15\%$ reduction in parameters;
 - a 1 0.3/0.4 = 25% reduction in operations;
 - yet an accuracy drop of only 1.2% and 0.5% on ImageNet and CIFAR-100, respectively.
- In the most extreme, B_{-4} shows:
 - a $1 1.3/5.3 \approx$ 75% reduction in parameters;
 - a 1 0.05/0.4 = 87.5% reduction in operations;
 - ▶ with an **accuracy drop** of **9.4%** and **7.6%** on ImageNet and CIFAR-100, respectively.

↔ The massive reduction in computation allows for great flexibility.

	Input		ImageNet		CIFAF	R-100
Model	size	FLOPs	Params	Top-1	Params	Top-1
B0	224	0.4B	5.3M	75	4.1M	81.9
B_{-1}	195	0.3B	4.5M	73.8	3.5M	81.4
B_{-2}	170	0.2B	3.4M	71.3	$2.5 \mathrm{M}$	79.8
B_{-3}	145	$0.1\mathrm{B}$	$2.8\mathrm{M}$	68.5	$1.9\mathrm{M}$	78.2
B_{-4}	128	0.05B	1.3M	65.6	1.3M	74.3

Lite-HRNet/Structure of Lite-HRNet

Table 1. **Structure of Lite-HRNet**. The stem contains one stride 2.3×3 convolution and one shuffle block. The main body has three stages, each of which has a sequence of modules. Each module consists of two conditional channel weight blocks and one fusion block. *N* in Lite-HRNet-*N* indicates the number of layers. *resolution branch* indicates this stage contains the feature stream of the corresponding resolution. ccw = conditional channel weight.

layer output size	operator	resolution branch	#output_channels	repeat	#modules		
	operator	resolution branch	#output_cnannets	repeat	Lite-HRNet-18	Lite-HRNet-30	
image	256×256		1×	3			
stem	64×64	conv2d	$2\times$	32	1	- 1	1
stem	04 × 04	shuffle block	4×	32	1		
stage-	64×64	ccw block	$4 \times 8 \times$	40, 80	2	2	3
stage ₂	04 × 04	fusion block	$4 \times 8 \times$	40, 80	1		
stage3	64×64	ccw block	$4 \times 8 \times 16 \times$	40, 80, 160	2	4	8
stage3	04 × 04	fusion block	$4 \times 8 \times 16 \times$	40, 80, 160	1		
stage -	64×64	ccw block	$4 \times 8 \times 16 \times 32 \times$	40, 80, 160, 320	2	2	3
stage ₄	stage ₄ 64×64	fusion block	$4 \times 8 \times 16 \times 32 \times$	40, 80, 160, 320	1	2	5
FLOPs						273.4M	425.3M
#Params						1.1M	1.8M

Example of complexity comparison between 1×1 convolutions and depthwise convolutions.

Table 2. Computational complexity comparison: 1×1 convolution vs. conditional channel weight. $X_s \in \mathcal{R}^{H_s \times W_s \times C_s}$ are the input channel maps for the *s* resolution, X_1 corresponds to the highest resolution. $N_s = H_s W_s$. For example, the shape of X_1 and X_2 are $64 \times 64 \times 40$ and $32 \times 32 \times 80$, respectively. single/cross-resolution=single/cross resolution information exchange.

model	single-resolution	cross-resolution	Theory Complexity	Example FLOPs
1×1 convolution	✓		$\sum_{1}^{s} N_s C_s^2$	12.5M
3×3 depthwise convolution			$\sum_{1}^{s} 9N_sC_s$	2.1M
CCW w/ spatial weights	√		$\sum_{1}^{s} (2C_{s}^{2} + N_{s}C_{s})$	0.25M
CCW w/ multi-resolution weights		\checkmark	$2(\sum_{1}^{s} C_{s})^{2} + \sum_{1}^{s} N_{s}C_{s}$	0.26M
CCW	√	√	$2(\sum_{1}^{s} C_{s})^{2} + 2\sum_{1}^{s} (C_{s}^{2} + N_{s}C_{s})$	0.51M

Lite-HRNet/Cross-Resolution Weight Computation/1

- Considering the s stage, there are s parallel resolutions, and s weight maps W₁, W₂,..., W_s.
- ► We compute the *s* weight maps from all the channels across resolutions using a lightweight function *H_s*:

$$(\mathsf{W}_1,\mathsf{W}_2,\ldots,\mathsf{W}_s)=\mathcal{H}_s(\mathsf{X}_1,\mathsf{X}_2,\ldots,\mathsf{X}_s),$$

where $\{X_1, X_2, \dots, X_s\}$ are the input maps for the *s* resolutions. $X_1 \rightsquigarrow$ highest resolution, $X_2 \rightsquigarrow$ *s*th highest resolution.

Lite-HRNet/Cross-Resolution Weight Computation/2

Implementation of the lightweight function \mathcal{H}_s :

• Perform adaptive average pooling (AAP) on $\{X_1, X_2, \dots, X_{s-1}\}$:

 $\mathsf{X}_1' = \mathsf{AAP}(X_1), \quad \mathsf{X}_2' = \mathsf{AAP}(X_2), \quad \dots, \quad \mathsf{X}_{s-1}' = \mathsf{AAP}(X_{s-1}).$

 \rightsquigarrow AAP pools any input size to a given output size $W_s \times H_s$.

► Concatenate {X'₁, X'₂,..., X'_{s-1}} and X_s together, followed by a 1 × 1 convolution, ReLU, 1 × 1 convolution, and sigmoid, generating weight maps consisting of *s* partitions, W'₁, W'₂,..., W_s:

 $(\mathsf{X}_1',\mathsf{X}_2',\ldots,\mathsf{X}_s)\to \text{Conv.}\to \text{ReLU}\to \text{Conv.}\to\sigma\to(\mathsf{W}_1',\mathsf{W}_2',\ldots,\mathsf{W}_s).$

► The s - 1 weight maps W'₁, W'₂,..., W'_{s-1} are upsampled to the corresponding resolutions, outputting W₁, W₂,..., W_{s-1} for the subsequent element-wise channel weighting.