Riemannian gradient descent for spherical area-preserving mappings

Marco Sutti

Postdoc at GSSI

Joint work with Mei-Heng Yueh

COMPiLE Seminar, Gran Sasso Science Institute

November 5, 2025

Overview

Paper: Riemannian gradient descent for spherical area-preserving mappings, M. Sutti and M.-H. Yueh, AIMS Math., Vol. 9(7), 19414–19445, 12 June 2024.

Main contributions:

- (i) Combine tools from Riemannian optimization and computational geometry to propose a Riemannian gradient descent (RGD) method for computing spherical area-preserving mappings of topological spheres.
- (ii) Numerical experiments on several mesh models demonstrate the accuracy and efficiency of the algorithm.
- (iii) Competitiveness and efficiency of our algorithm over three state-of-the-art methods for computing area-preserving mappings.

This talk:

- I. Simplicial surfaces and mappings, stretch and authalic energy.
- II. Optimization on matrix manifolds, fundamental ideas and tools.
- III. Numerical experiments.

I. Simplicial surfaces and mappings, authalic and stretch energies

Simplicial surfaces and mappings/1

▶ A simplicial surface \mathcal{M} is the underlying set of a simplicial 2-complex $\mathcal{K}(\mathcal{M}) = \mathcal{F}(\mathcal{M}) \cup \mathcal{E}(\mathcal{M}) \cup \mathcal{V}(\mathcal{M})$ composed of vertices

$$\mathcal{V}(\mathcal{M}) = \left\{ v_\ell = \left(v_\ell^1, v_\ell^2, v_\ell^2 \right)^\top \in \mathbb{R}^3 \right\}_{\ell=1}^n,$$

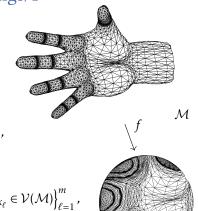
oriented triangular faces

$$\mathcal{F}(\mathcal{M}) = \left\{\tau_{\ell} = \left[v_{i_{\ell}}, v_{j_{\ell}}, v_{k_{\ell}}\right] \mid v_{i_{\ell}}, v_{j_{\ell}}, v_{k_{\ell}} \in \mathcal{V}(\mathcal{M})\right\}_{\ell=1}^{m},$$

and undirected edges

$$\mathcal{E}(\mathcal{M}) = \left\{ [v_i, v_j] \mid [v_i, v_j, v_k] \in \mathcal{F}(\mathcal{M}) \text{ for some } v_k \in \mathcal{V}(\mathcal{M}) \right\}.$$

► A simplicial mapping $f: \mathcal{M} \to \mathbb{R}^3$ is a particular type of piecewise affine mapping with the restriction mapping $f|_{\tau}$ being affine, for every $\tau \in \mathcal{F}(\mathcal{M})$.



Simplicial surfaces and mappings/2

▶ We denote

$$\mathbf{f}_\ell \coloneqq f(v_\ell) = \left(f_\ell^1, f_\ell^2, f_\ell^3\right)^\top,$$

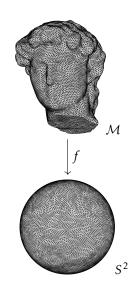
for every $v_{\ell} \in \mathcal{V}(\mathcal{M})$.

► The (image of the) mapping *f* can be represented as a matrix

$$\mathbf{f} = \begin{bmatrix} \mathbf{f}_1^{\mathsf{T}} \\ \vdots \\ \mathbf{f}_n^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} f_1^1 & f_1^2 & f_1^3 \\ \vdots & \vdots & \vdots \\ f_n^1 & f_n^2 & f_n^3 \end{bmatrix} =: \begin{bmatrix} \mathbf{f}^1 & \mathbf{f}^2 & \mathbf{f}^3 \end{bmatrix},$$

or a vector

$$\operatorname{vec}(\mathbf{f}) = \begin{bmatrix} \mathbf{f}^1 \\ \mathbf{f}^2 \\ \mathbf{f}^3 \end{bmatrix}.$$



A simplicial mapping $f: \mathcal{M} \to \mathbb{R}^3$ is said to be area-preserving if $|f(\tau)| = |\tau|$ for every $\tau \in \mathcal{F}(\mathcal{M})$.

Authalic energy

The authalic (or equiareal) energy for simplicial mappings $f: \mathcal{M} \to \mathbb{R}^3$ is

$$E_A(f) = E_S(f) - \mathcal{A}(f),$$

where A(f) is the image area, E_S is the stretch energy defined as

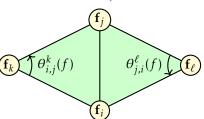
$$E_S(f) = \frac{1}{2} \operatorname{vec}(\mathbf{f})^{\top} (I_3 \otimes L_S(f)) \operatorname{vec}(\mathbf{f}),$$

where $L_S(f)$ is the weighted Laplacian matrix $L_S(f)$, defined by

$$[L_S(f)]_{i,j} = \begin{cases} -\sum_{[v_i,v_j,v_k] \in \mathcal{F}(\mathcal{M})} [\omega_S(f)]_{i,j,k} & \text{if } [v_i,v_j] \in \mathcal{E}(\mathcal{M}), \\ -\sum_{\ell \neq i} [L_S(f)]_{i,\ell} & \text{if } j = i, \\ 0 & \text{otherwise,} \end{cases}$$

in which $\omega_S(f)$ is the modified cotangent weight defined as

$$[\omega_S(f)]_{i,j,k} = \frac{\cot(\theta^k_{i,j}(f))|f([v_i,v_j,v_k])|}{2|[v_i,v_j,v_k]|}.$$



Stretch energy/1

▶ The stretch energy can be reformulated as [see Lemma 3.1, Yueh 2023]

$$E_S(f) = \sum_{\tau \in \mathcal{F}(\mathcal{M})} \frac{|f(\tau)|^2}{|\tau|}.$$

▶ (If the area-preserving simplicial mapping exists) then every minimizer of $E_S(f)$ is an area-preserving mapping and vice-versa [Theorem 3.3, Yueh 2023], i.e.,

$$f = \underset{|g(\mathcal{M})| = |\mathcal{M}|}{\operatorname{argmin}} E_S(g)$$

if and only if $|f(\tau)| = |\tau|$ for every $\tau \in \mathcal{F}(\mathcal{M})$.

▶ It is also proved that $E_A(f) \ge 0$ and the equality holds if and only if f is area-preserving [Corollary 3.4, Yueh 2023].

Theoretical foundation of the stretch energy minimization for area-preserving simplicial mappings: [Yueh 2023]

Stretch energy/2

▶ Due to the optimization process, $\mathcal{A}(f)$ varies, hence we introduce a prefactor $|\mathcal{M}|/\mathcal{A}(f)$ and define the normalized stretch energy as

$$E(f) = \frac{|\mathcal{M}|}{\mathcal{A}(f)} E_S(f).$$

▶ To perform numerical optimization we need to compute the Euclidean gradient of E(f). By applying the formula $\nabla E_S(f) = 2 (I_3 \otimes L_S(f)) \operatorname{vec}(\mathbf{f})$ from [Yueh 2023], the gradient of E(f) can be formulated as

$$\nabla E(f) = \nabla \left(\frac{|\mathcal{M}|}{\mathcal{A}(f)} E_S(f) \right)$$

$$= \frac{|\mathcal{M}|}{\mathcal{A}(f)} \nabla E_S(f) + E_S(f) \nabla \frac{|\mathcal{M}|}{\mathcal{A}(f)}$$

$$= \frac{2|\mathcal{M}|}{\mathcal{A}(f)} (I_3 \otimes L_S(f)) \operatorname{vec}(\mathbf{f}) - \frac{|\mathcal{M}| E_S(f)}{\mathcal{A}(f)^2} \nabla \mathcal{A}(f).$$

II. Riemannian optimization framework and geometry

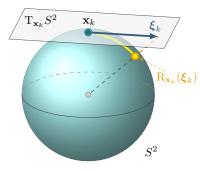
Riemannian optimization/1

- ► The Riemannian optimization framework solves constrained optimization problems where the constraints have a geometric nature.
 - Exploit the underlying geometric structure of the problems. The optimization variables are constrained to a smooth manifold.

- ▶ In our setting: The problem is formulated on a power manifold of n unit spheres embedded in \mathbb{R}^3 , and we use the RGD method for minimizing the cost function on this power manifold.
- ► Traditional optimization methods rely on the Euclidean space structure.
 - For instance, the steepest descent method for minimizing $g: \mathbb{R}^n \to \mathbb{R}$ updates \mathbf{x}_k by moving in the direction \mathbf{d}_k of the anti-gradient of g, by a step size α_k chosen according to an appropriate line-search rule.

Riemannian optimization/2

- ► A line-search method in the Riemannian framework determines at \mathbf{x}_k on a manifold M a search direction $\boldsymbol{\xi}_k$ on $T_{\mathbf{x}_k}M$.
- ▶ \mathbf{x}_{k+1} is then determined by a line search along a curve $\alpha \mapsto \mathbf{R}_{\mathbf{x}_k}(\alpha \boldsymbol{\xi}_k)$ where $\mathbf{R}_{\mathbf{x}_k} \colon \mathbf{T}_{\mathbf{x}_k} M \to M$ is the retraction mapping.
- Repeat for \mathbf{x}_{k+1} taking the role of \mathbf{x}_k .



- ► Search directions can be the negative of the Riemannian gradient, leading to the Riemannian gradient descent method (RGD).
 - ▶ Other choices of search directions ~> other methods, e.g., Riemannian trust-region method or Riemannian BFGS.

Riemannian trust-region method: [Absil/Baker/Gallivan 2007], Riemannian BFGS: [Ring/Wirth 2012]

Geometry of the unit sphere S^2

The unit sphere S^2 is a Riemannian submanifold of \mathbb{R}^3 defined as

$$S^2 = \{ \mathbf{x} \in \mathbb{R}^3 \colon \mathbf{x}^\top \mathbf{x} = 1 \}.$$

The Riemannian metric on the unit sphere is inherited from \mathbb{R}^3 , i.e.,

simplicial mapping f), and tangent vectors are represented by ξ_{ℓ} .

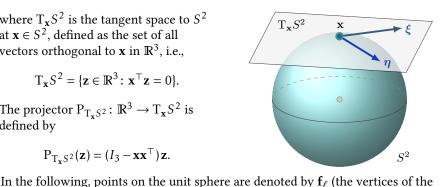
$$\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle_{\mathbf{x}} = \boldsymbol{\xi}^{\top} \boldsymbol{\eta}, \quad \boldsymbol{\xi}, \, \boldsymbol{\eta} \in \mathbf{T}_{\mathbf{x}} S^2,$$

where $T_{\mathbf{x}}S^2$ is the tangent space to S^2 at $\mathbf{x} \in S^2$, defined as the set of all vectors orthogonal to \mathbf{x} in \mathbb{R}^3 , i.e.,

$$\mathbf{T}_{\mathbf{x}}S^2 = \{\mathbf{z} \in \mathbb{R}^3 \colon \mathbf{x}^\top \mathbf{z} = 0\}.$$

The projector $P_{T_{\mathbf{x}}S^2} \colon \mathbb{R}^3 \to T_{\mathbf{x}}S^2$ is defined by

$$P_{\mathsf{T}_{\mathbf{x}}S^2}(\mathbf{z}) = (I_3 - \mathbf{x}\mathbf{x}^\top)\mathbf{z}.$$



Geometry of the power manifold $(S^2)^n$

We aim to minimize the function $E(f) = E(\mathbf{f}_1, ..., \mathbf{f}_n)$, where each \mathbf{f}_{ℓ} , $\ell = 1, ..., n$, lives on the same manifold S^2 .

 \rightarrow This leads us to consider the power manifold of *n* unit spheres

$$\left(S^2\right)^n = \underbrace{S^2 \times S^2 \times \cdots S^2}_{n \text{ times}},$$

with the metric of S^2 extended elementwise.

In the next slides, we present the tools from Riemannian geometry needed to generalize gradient descent to this manifold, namely:

- ► The projector onto the tangent space to $(S^2)^n$ is used to compute the Riemannian gradient.
- ► The projection onto $(S^2)^n$ turns points of $\mathbb{R}^{n\times 3}$ into points of $(S^2)^n$.
- ► The retraction turns an objective function defined on $\mathbb{R}^{n\times 3}$ into an objective function defined on the manifold $(S^2)^n$.

Projector onto the tangent space to $(S^2)^n$

Here, the points are denoted by $\mathbf{f}_{\ell} \in \mathbb{R}^3$, $\ell = 1, ..., n$, so we write

$$P_{\mathrm{T}_{\mathbf{f}_{\ell}}S^2} = I_3 - \mathbf{f}_{\ell}\mathbf{f}_{\ell}^{\top}.$$

It clearly changes for every vertex \mathbf{f}_{ℓ} . The projector from $\mathbb{R}^{n\times 3}$ onto the tangent space at \mathbf{f} to the power manifold $\left(S^2\right)^n$ is a mapping

$$P_{T_{\mathbf{f}}(S^2)^n} \colon \mathbb{R}^{n \times 3} \to T_{\mathbf{f}}(S^2)^n$$
,

and can be represented by a block diagonal matrix of size $3n \times 3n$, i.e.,

$$P_{T_{\mathbf{f}}\left(S^{2}\right)^{n}} := blkdiag\left(P_{T_{\mathbf{f}_{1}}S^{2}}, P_{T_{\mathbf{f}_{2}}S^{2}}, \dots, P_{T_{\mathbf{f}_{n}}S^{2}}\right) = \begin{bmatrix} P_{T_{\mathbf{f}_{1}}S^{2}} & & & \\ & P_{T_{\mathbf{f}_{2}}S^{2}} & & & \\ & & \ddots & & \\ & & & P_{T_{\mathbf{f}_{n}}S^{2}} \end{bmatrix}.$$

Projection onto the power manifold $(S^2)^n$

The projection of a single vertex \mathbf{f}_{ℓ} from \mathbb{R}^3 to the unit sphere S^2 is given by the normalization

$$\widetilde{f}_\ell = \frac{f_\ell}{\|f_\ell\|_2}.$$

Hence, the projection of the whole of **f** onto the power manifold $\left(S^2\right)^n$ is given by

$$P_{\left(S^2\right)^n} \colon \mathbb{R}^{n \times 3} \to \left(S^2\right)^n$$
,

defined by

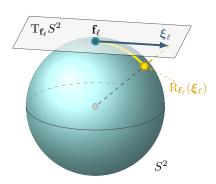
$$\mathbf{f} \mapsto \widetilde{\mathbf{f}} := \operatorname{diag}\left(\frac{1}{\|\mathbf{f}_1\|_2}, \frac{1}{\|\mathbf{f}_2\|_2}, \dots, \frac{1}{\|\mathbf{f}_n\|_2}\right) \begin{bmatrix} \mathbf{f}_1 & \mathbf{f}_2 & \cdots & \mathbf{f}_n \end{bmatrix}^{\mathsf{T}}.$$

This representative matrix is only shown for illustrative purposes; in the actual implementation, we use row-wise normalization of ${\bf f}$.

Retraction

► The retraction of a tangent vector ξ_{ℓ} from $T_{f_{\ell}}S^2$ to S^2 is a mapping $R_{f_{\ell}}: T_{f_{\ell}}S^2 \to S^2$, defined by

$$R_{\mathbf{f}_\ell}(\boldsymbol{\xi}_\ell) = \frac{\mathbf{f}_\ell + \boldsymbol{\xi}_\ell}{\|\mathbf{f}_\ell + \boldsymbol{\xi}_\ell\|}.$$



► For the power manifold $(S^2)^n$, the retraction of all the tangent vectors ξ_ℓ , $\ell = 1, ..., n$, is a mapping $R_f : T_f(S^2)^n \to (S^2)^n$, defined by

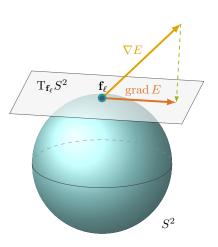
$$\begin{bmatrix} \boldsymbol{\xi}_1 & \cdots & \boldsymbol{\xi}_n \end{bmatrix}^{\top} \mapsto \operatorname{diag} \left(\frac{1}{\|\mathbf{f}_1 + \boldsymbol{\xi}_1\|_2}, \dots, \frac{1}{\|\mathbf{f}_n + \boldsymbol{\xi}_n\|_2} \right) \begin{bmatrix} \mathbf{f}_1 + \boldsymbol{\xi}_1 & \cdots & \mathbf{f}_n + \boldsymbol{\xi}_n \end{bmatrix}^{\top}.$$

Riemannian gradient descent method/1

► The Riemannian gradient of the objective function E is given by the projection onto $T_f(S^2)^n$ of the Euclidean gradient of E, namely,

$$\operatorname{grad} E(f) = \operatorname{P}_{\operatorname{T}_{\mathbf{f}}(S^2)^n}(\nabla E(f)).$$

► This is always the case for embedded submanifolds; see Prop. 3.6.1 in Absil et al., 2008.



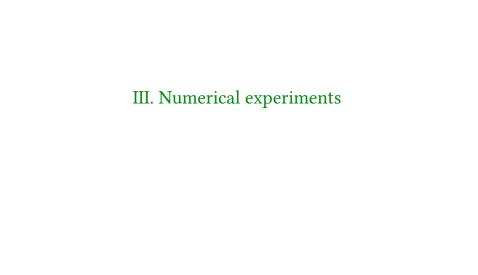
Riemannian gradient descent method/2

```
Algorithm 1: The RGD method on (S^2)^n.
```

10 end while

```
<sup>1</sup> Given objective function E, power manifold (S^2)^n, initial iterate<sup>(*)</sup>
    \mathbf{f}^{(0)} \in \left(S^2\right)^n, projector P_{\mathbf{T_f}\left(S^2\right)^n} from \mathbb{R}^{n \times 3} to \mathbf{T_f}\left(S^2\right)^n, retraction \mathbf{R_f} from
    T_{\mathbf{f}}(S^2)^n to (S^2)^n;
   Result: Sequence of iterates \{f^{(k)}\}\.
2 k \leftarrow 0:
3 while f^{(k)} does not sufficiently minimizes E do
        Compute the Euclidean gradient of the objective function \nabla E(f^{(k)});
        Compute the Riemannian gradient as grad E(f^{(k)}) = P_{T_{e(k)}(S^2)^n}(\nabla E(f^{(k)}));
5
        Choose the anti-gradient direction \mathbf{d}^{(k)} = -\operatorname{grad} E(f^{(k)});
6
        Use a line-search procedure to compute a step size \alpha_k > 0 that satisfies the
7
          sufficient decrease condition;
        Set \mathbf{f}^{(k+1)} = \mathbf{R}_{\mathbf{f}^{(k)}}(\alpha_k \mathbf{d}^{(k)});
        k \leftarrow k + 1:
```

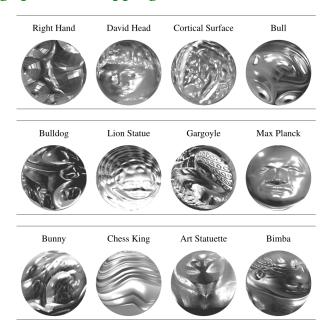
(*) The initial mapping $\mathbf{f}^{(0)} \in (S^2)^n$ is computed via the fixed-point iteration (FPI) method of Yueh et al., 2019, until the first increase in energy is detected.



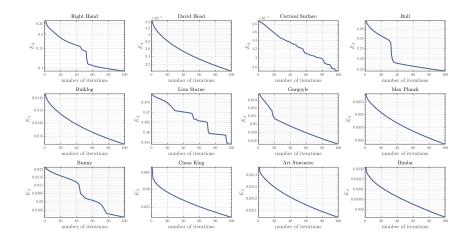
The benchmark triangular mesh models

Model Name # Faces # Vertices	Right Hand 8,808 4,406	David Head 21,338 10,671	Cortical Surface 30,000 15,002	Bull 34,504 17,254	
•					
Model Name # Faces # Vertices	Bulldog 99,590 49,797	Lion Statue 100,000 50,002	Gargoyle 100,000 50,002	Max Planck 102,212 51,108	
Model Name # Faces # Vertices	Bunny 111,364 55,684	Chess King 263,712 131,858	Art Statuette 895,274 447,639	Bimba 1,005,146 502,575	
			33		

Resulting spherical mappings



Convergence behavior of RGD



Comparison with other methods/1

Comparison with the fixed-point iteration method for minimizing the authalic energy E_A of Yueh et al., 2019.

	Fixed point method [Yueh et al. 19]			Our RGD method			
Model Name	SD/Mean	$E_A(f)$	Time	SD/Mean	$E_A(f)$	Time	
Right Hand	0.4598	2.92×10^{0}	1.35	0.1204	9.40×10^{-2}	4.07	
David Head	0.0169	3.58×10^{-3}	4.30	0.0156	3.04×10^{-3}	9.16	
Cortical Surface	0.0174	3.21×10^{-3}	5.62	0.0200	3.72×10^{-3}	16.01	
Bull	0.1876	4.59×10^{-1}	6.90	0.1348	2.19×10^{-1}	18.89	
Bulldog	0.1833	3.99×10^{-1}	22.22	0.0343	1.27×10^{-2}	61.93	
Lion Statue	0.2064	5.28×10^{-1}	23.67	0.1894	4.54×10^{-1}	76.76	
Gargoyle	4.1020	4.85×10^{2}	36.10	0.0646	4.76×10^{-2}	80.52	
Max Planck	0.1844	1.67×10^{1}	25.99	0.0525	3.39×10^{-2}	75.60	
Bunny	0.0394	3.96×10^{-2}	35.78	0.0390	1.91×10^{-2}	89.62	
Chess King	1.0903	1.79×10^{1}	88.04	0.0647	5.23×10^{-2}	207.47	
Art Statuette	0.0908	1.07×10^{-1}	342.95	0.0405	2.10×10^{-2}	654.57	
Bimba Statue	0.0932	7.42×10^{-2}	305.00	0.0512	3.29×10^{-2}	775.36	

Fixed-point iteration method for minimizing the authalic energy: [Yueh et al. 2019]

Comparison with other methods/2

Comparison with the adaptive area-preserving parameterization for genus-zero closed surfaces proposed by Choi et al., 2022.

	Choi et al., 2022			Our RGD method		
Model Name	SD/Mean	$E_A(f)$	Time	SD/Mean	$E_A(f)$	Time
Right Hand	18.3283	4.84×10^{3}	218.03	0.1204	9.40×10^{-2}	4.07
David Head	0.0426	2.27×10^{-2}	298.76	0.0156	3.04×10^{-3}	9.16
Cortical Surface	0.6320	1.14×10^{0}	420.20	0.0200	3.72×10^{-3}	16.01
Bull	8.5565	1.82×10^{3}	34.42	0.1348	2.19×10^{-1}	18.89
Bulldog	9.2379	1.22×10^{3}	183.94	0.0343	$\boldsymbol{1.27\times10^{-2}}$	61.93
Lion Statue	0.2626	8.96×10^{-1}	1498.91	0.1894	4.54×10^{-1}	76.76
Gargoyle	0.3558	1.30×10^{0}	1483.35	0.0646	4.76×10^{-2}	80.52
Max Planck	11.6875	1.49×10^{3}	195.39	0.0525	3.39×10^{-2}	75.60
Bunny	27.6014	8.94×10^{3}	157.87	0.0390	1.91×10^{-2}	89.62
Chess King	11.8300	1.65×10^{3}	608.55	0.0647	5.23×10^{-2}	207.47
Art Statuette	394.4414	9.93×10^{0}	2284.79	0.0405	2.10×10^{-2}	654.57
Bimba Statue	0.5110	2.01×10^{0}	16 773.34	0.0512	$3.29\!\times\! 10^{-2}$	775.36

Adaptive area-preserving parameterization for genus-zero closed surfaces:

[Choi/Giri/Kumar 2022]

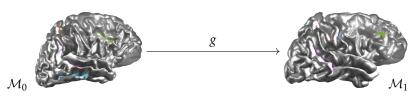
Comparison with other methods/3

Comparison with the spherical optimal transportation mapping proposed by Cui et al., 2019. The executable fails to output a mapping for eight mesh models among the twelve, which are not shown in the table.

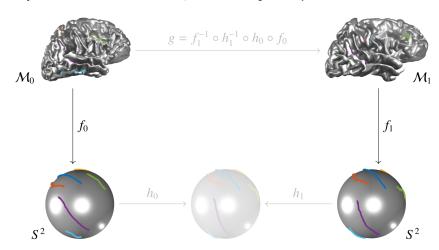
	Cui et al., 2019			Our RGD method		
Model Name	SD/Mean	$E_A(f)$	#Its.	SD/Mean	$E_A(f)$	Time
David Head	0.4189	2.25×10^{0}	27	0.0156	3.04×10^{-3}	9.16
Cortical Surface	0.5113	3.11×10^{0}	27	0.0200	3.72×10^{-3}	16.01
Bulldog	0.8665	1.00×10^{1}	33	0.0343	1.27×10^{-2}	61.93
Max Planck	0.5619	4.38×10^{0}	25	0.0525	3.39×10^{-2}	75.60

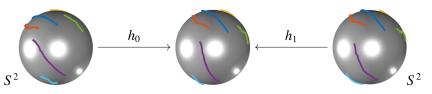
- ▶ A registration mapping between surfaces \mathcal{M}_0 and \mathcal{M}_1 is a bijective mapping $g \colon \mathcal{M}_0 \to \mathcal{M}_1$. An ideal registration mapping keeps important landmarks aligned while preserving specified geometry properties.
- ► Framework for the computation of landmark-aligned area-preserving parameterizations of genus-zero closed surfaces.
- ▶ Illustration with the landmark-aligned morphing process from one brain to another.

<u>Problem statement</u>: Given a set of landmark pairs (in this case, four sulci) $\{(p_i, q_i) \mid p_i \in \mathcal{M}_0, q_i \in \mathcal{M}_1\}_{i=1}^m$, our goal is to compute an area-preserving simplicial mapping $g \colon \mathcal{M}_0 \to \mathcal{M}_1$ that satisfies $g(p_i) \approx q_i$, for i = 1, ..., m.



▶ First, we compute area-preserving parameterizations $f_0: \mathcal{M}_0 \to S^2$ and $f_1: \mathcal{M}_1 \to S^2$ of surfaces \mathcal{M}_0 and \mathcal{M}_1 , respectively.





► The simplicial mapping $h: S^2 \to S^2$ that satisfies $h \circ f_0(p_i) = f_1(q_i)$, for i = 1, ..., m, can be carried out by minimizing the registration energy

$$E_R(h) = E_S(h) + \sum_{i=1}^m \lambda_i ||h \circ f_0(p_i) - f_1(q_i)||^2.$$

▶ Let **h** be the matrix representation of h. The gradient of E_R with respect to **h** can be formulated as

$$\nabla E_R(h) = 2(I_3 \otimes L_S(h)) \operatorname{vec}(\mathbf{h}) + \operatorname{vec}(\mathbf{r}),$$

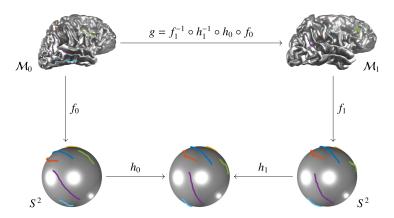
where \mathbf{r} is the matrix of the same size as \mathbf{h} given by

$$\mathbf{r}(i,:) = \begin{cases} 2\lambda_i \left(\mathbf{h}(i,:) - (f_1(q_i))^{\top}\right) & \text{if } p_i \text{ is a landmark,} \\ (0,0,0) & \text{otherwise.} \end{cases}$$

▶ In practice, we define the midpoints c_i of each landmark pairs on S^2 as

$$c_i = \frac{1}{2}(f_0(p_i) + f_1(q_i)),$$

for $i=1,\ldots,m$, and compute h_0 and h_1 on S^2 that satisfy $h_0 \circ f_0(p_i) = c_i$ and $h_1 \circ f_1(q_i) = c_i$, respectively. The registration mapping $g: \mathcal{M}_0 \to \mathcal{M}_1$ is obtained by the composition $g = f_1^{-1} \circ h_1^{-1} \circ h_0 \circ f_0$.

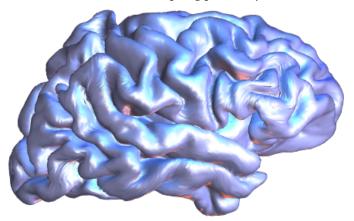


Brain morphing

- ▶ Brain morphing via the linear homotopy method.
- ▶ A landmark-aligned morphing process from \mathcal{M}_0 to \mathcal{M}_1 can be constructed by the linear homotopy $H \colon \mathcal{M}_0 \times [0,1] \to \mathbb{R}^3$ defined as

$$H(v,t) = (1-t)v + t g(v).$$

▶ We demonstrate the morphing process by the animation below.



Conclusions

Main contributions:

- ► Riemannian optimization & computational geometry → RGD method for computing spherical area-preserving mappings of genus-zero closed surfaces.
- Extensive numerical experiments on various mesh models to demonstrate the algorithm's stability and effectiveness.
- ► Landmark-aligned surface registration between two human brain models.

More recent work:

- Use appropriate Riemannian generalizations of the conjugate gradient method or the limited memory BFGS method.
- ► Toroidal area-preserving parameterizations of genus-one closed surfaces, M. Sutti and M.-H. Yueh, submitted, 7 August 2025.

