

Analysis and optimization of perfectly matched layers for the Boltzmann equation

Marco Sutti[†] and Jan S. Hesthaven[‡] † Section of Mathematics, UNIGE, ‡ MCSS – MATHICSE, EPFL

Overview

Numerical simulations of problems defined on unbounded domains are challenging due to limited computational resources. To truncate the simulation domain one usually introduces absorbing boundary layers.

We consider the BGK approximation to the Boltzmann equation and study stability and optimization of an absorbing layer developed following the PML technique. We use ANOVA expansion of multivariate functions to calculate the Total Sensitivity Indices of the parameters. A small set of important parameters is found and minimization techniques are used to choose the optimal parameter values in this set.

Perfectly matched layers (PML)

Stability analysis through continued fractions

Appelö et al. [2] studied the sign of the eigenvalues of \hat{P} by means of

Theorem – Frank (1946)

Consider any polynomial q(z) of degree n. Let D be a real number and define the polynomials Q_0 and Q_1 with real coefficients by

 $q(\mathrm{i}D) \equiv \mathrm{i}^n[Q_0(D) + \mathrm{i}Q_1(D)].$

with $c_j \neq 0$ and $n_r \leq n$. The number of roots of q(z) with positive (negative) real part

- Introduced by Bérenger in 1994 starting from physical considerations on electromagnetic waves
- Waves entering into the PML are damped out without reflections at the PML interface
- Hagstrom, 2003: modal analysis in Laplace-Fourier space, applicable only to *linear* problems
- Key idea: eigenfunctions of the problem outside and inside the PML are matched

Physical domain PML Figure 1: Example of PML.

Bhatnagar-Gross-Krook (BGK) model

- ► The BGK model is an approximation to the Boltzmann equation $\frac{\partial f}{\partial t} + \boldsymbol{\zeta} \cdot \boldsymbol{\nabla}_{\boldsymbol{x}} f = -\frac{1}{\gamma} (f - f_{\rm B}(\rho, \boldsymbol{u}))$
- Expansion of f in a basis $\xi_k(\zeta)$ of Hermite polynomials yields

$$f(t,\zeta,\mathbf{x}) = \sum_{k=0}^{\infty} a_k(\mathbf{x},t) \,\xi_k(\zeta) \Rightarrow \boxed{\frac{\partial \mathbf{a}}{\partial t} + A_1 \frac{\partial \mathbf{a}}{\partial x_1} + A_2 \frac{\partial \mathbf{a}}{\partial x_2}} = S(\mathbf{a})$$

- Constant coefficient, symmetric hyperbolic system
- Linear, some nonlinear terms in S(a): Hagstrom's theory is applicable
 For weakly compressible flows it recovers isentropic Navier-Stokes eqs

- equals the number of positive (negative) c_j . Moreover, there are $n n_r$ roots on the imaginary axis.
- The characteristic polynomial p(z) of the symbol \hat{P} factorizes as: $p(z) = z^2 (z + \alpha_0 + ik_2\alpha_1 + \sigma_1)^2 \mu_4(z) \nu_4(z),$
- First coefficient in the continued fraction expansion of $\mu_4(z)$:

$$c_1 = -\frac{1}{2(\alpha_0 + \sigma_1)} \Rightarrow \alpha_0 > -\sigma_1.$$

Second coefficient:

$$c_2 = \text{very complicated!} \xrightarrow{\text{Assuming } \sigma_1 \to 0} \quad \lambda_0 = \lambda_1 = 0.$$

ANOVA expansion of multivariate functions

ANOVA expansion of a multivariate function with $\alpha = \alpha_1, \ldots, \alpha_p$

$$g(oldsymbol{lpha}) = g_0 + \sum_{\mathcal{T} \subseteq \mathcal{P}} g_\mathcal{T}(oldsymbol{lpha}_\mathcal{T}).$$

- \blacktriangleright In our case g is an error functional of the solution to the BGK+PML
- ► Central ingredient: multivariate numerical integration, here implemented with product rules with Gauss-Legendre quadrature, $(G_n)^p$
- From the $g_{\mathcal{T}}(\alpha_{\mathcal{T}})$ it is possible to define the Total Sensitivity Index (TSI)

BGK+PML model

▶ PML for the BGK model proposed by Gao et al. [1]

$$\begin{cases} \frac{\partial a}{\partial t} + A_1 \left(\frac{\partial a}{\partial x_1} + \sigma_1 \left(\lambda_0 a + \omega \right) \right) + A_2 \frac{\partial a}{\partial x_2} = S(a), \\ \frac{\partial \omega}{\partial t} + \alpha_1 \frac{\partial \omega}{\partial x_2} + \left(\alpha_0 + \sigma_1 \right) \omega + \frac{\partial a}{\partial x_1} + \lambda_0 \left(\alpha_0 + \sigma_1 \right) a - \lambda_1 \frac{\partial a}{\partial x_2} = \mathbf{0}. \end{cases}$$

Shape of damping function $\sigma_1(x)$:

$$(x) = C\left(\frac{x-x_0}{L}\right)^{\beta}, \quad C \simeq (\Delta t)^{-1}.$$

► We study β , L, α_0 , α_1 , λ_0 , λ_1

Implementation

 σ_1

► 4th-order finite differences in space and 4th-order Runge-Kutta in time

0.8

.0002

of a parameter α_i , which measures the combined sensitivity of all terms that depend on α_i [3]. These TSIs tell us which parameters are most important in the ANOVA expansion

Results of the ANOVA analysis

Cubature type	$lpha_{0}$	$lpha_1$	eta	L
$(G_2)^4$	0.1638	0.2474	0.2775	0.9312
$(G_3)^4$	0.1635	0.1916	0.2879	0.9385

Table 1: TSIs for the parameters α_0 , α_1 , β and L, using $g(\alpha_0, \alpha_1, \beta, L)$.

Table 2: Four sets of optimal values for the parameters α_0 , α_1 , β and L, obtained by minimizing $g(\alpha_0, \alpha_1, \beta, L)$.

Future work

Stability analysis through energy decay

► BGK+PML model in matrix form

- Multivariate numerical integration with sparse grid techniques
- Explore the influence of initial conditions and boundary conditions
- Coupling the BGK+PML model with the Navier-Stokes equations, solving the former in the PML and the latter in the physical domain

Essential references

- [1] Z. Gao, J. S. Hesthaven, and T. Warburton. Efficient Absorbing Layers for Weakly Compressible Flows. Technical report, 2011.
- [2] D. Appelö, T. Hagstrom, and G. Kreiss. Perfectly Matched Layers for Hyperbolic Problems: General Formulation, Well-Posedness and Stability. *SIAM Journal on Applied Mathematics*, 67:1–23, 2006.
- [3] Z. Gao and J. S. Hesthaven. Efficient Solution of Ordinary Differential Equations with High-Dimensional Parametrized Uncertainty. *Communications in Computational Physics*, 10(2):253–278, August 2011.