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» Several applications in optimization, image and signal processing deal with data
belonging to the Stiefel manifold

St(n,p) = {X € R™P: X'X = 1,}.

» Some applications require evaluating the geodesic distance between two arbitrary
points on St(n, p). No closed-form solution is known for St(n, p).

» A new computational framework for computing the geodesic distance is proposed,
based on the multiple shooting method and the leapfrog algorithm by L. Noakes.
» Two example applications:
> Karcher mean on the space of probability density functions (PDFs);
> Interpolation of data belonging to St(n, p) for parametric model reduction.

Geodesics on St(n, p)

» Geodesic: generalization of straight lines to manifolds.

» When the tangent space TxSt(n, p) is endowed with the canonical metric

1

g(A,A) = tr(A' (I — §XXT)A), A € TxSt(n, p),

one can get the following ODE for the geodesic Z = Z(t) [1, eq. (2.41)]:
L) o o | T ° 7 o[ o
/+77Z Z+Z(Z Z)+Z Z)=0.

» Closed-form solution for a geodesic Z(t) that realizes a tangent vector A with base
point X (Ross Lippert [1, eq. (2.42)]):

XTA —(X[A)T )\ [
Z(t) =[X Xﬂexp( XTA (é ) t) O" .

Riemannian logarithm on St(n, p)

» Given X, Y € St(n,p), the geodesic
distance d(X,Y) is the length of A, =
Z(0) € TxSt(n, p) s.t. the Riemannian ex-
ponential mapping Expy(A,) =Y.

» Equivalent to: Find the Riemannian log-
arithm of Y with base point X, i.e,

St(n, p)
Logx(Y) = A,
Problem statement: Find A, = Z(0) € TxSt(n, p) that satisfies the BVP
X o o o ® ® Z O — X
7—_77 7-Z((Z72?+Z Z), with BCs (0) =X,
Z(1)=Y.

» No closed-form solution to this problem is known for St(n, p)!

Single shooting method

» Define F(A) = Z;_1a)— Y. Find A, sit. F(A,) =0 with Newton’s method.
» All information is contained in a smaller problem on St(2p, p) — complexity re-

duces from O(n°) to O(p®) [1].

» A closed-form expression for the Fréchet derivative of the matrix exponential K:)\(p(A)
2, eq. (10.17b)] allows for explicit expressions of the Jacobians

Ky = (0l AT/2) & exp(A/2) sincs (G147 & (-A) )

» Fast convergence, but a very good initial guess A% is needed.
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Leapfrog algorithm (by L. Noakes [3])

» Based on subdivision, s.t. single shooting works well on each subinterval.
» lllustration of two iterations of the procedure, for m points:

Multiple shooting method

» Enforce continuity conditions of Z and Z at
the interfaces between subintervals.

» Fast convergence to A,.

> ng): point on St(n, p) relative to the k-th
subinterval.

> ng): tangent vector to St(n, p) at ng).

Figure: Multiple shooting on St(n, p).

System of nonlinear equations: For each subinterval k, we have an explicit

I Z(l) - 2(2) ] expression for the Jacobian G).
1 1
z) -7 G0 —1 0 0
z® _ ¥ - 0 G@_| ..
_ 22(2) B Zg3) _ O, I|near|ze> F(Z)—I— olsr=o.
O L @l
n=3 - Y u
P ) .
2T A -

Our Stiefel Log algorithm: shooting and leapfrog

» To compute the Riemannian
logarithm on St(n, p), single
shooting, leapfrog and multiple
shooting are combined as illus-
trated by the flowchart below.

iterations in the leapfrog algorithm increases.

» Leapfrog is used to initialize multiple shoot-
ing, to enforce the Newton-Kantorovich condi-

tion || DF(Xo)"1F(Zo)| < a.
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» Second N.-K. condition (work in progress):
| DF (o) * (DF(§) — DF(O)II < @ll€ — <l

Figure: Flowchart of the Stiefel Log
algorithm.

» We observe that F(X;) — 0 as the number of

Karcher mean of univariate probability density functions

» Karcher mean: one possible notion of mean on a Riemannian manifold M, defined
by the optimization problem p = arg minpeMﬁZ,N:l d(p, g;)?, where d(p, g;) is
the distance between two points on M.
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» S" = {x € R"™ : ||x|]| = 1} can be used | | | e
to approximate S, which represents the | |
space of univariate PDFs on the unit in- 02 1 %%
terval [O7 ].], i.e., 7) = {g : [O7 ].] — R>O : éo.w- 1 015}
1 o am
fO g(X) dXZ 1} 0.1} 1 01}
» Example: Karcher mean of 3 PDFs, sam- | [ |
pled at 100 points, which makes them be- | k N | j

longing to St(100, 1).

» Model reduction for dynamical systems parametrized with p = [p1, ..., pd] ':

{i(t; p) = A(p) x(t; p) + B(p) u(t), {ir(t: p) = A.(p) x,(t; p) + B/(p) u(t),
y(t; p) = C(p) x(t; p), eduction | ¥r(ti P) = C/(P) x:(t; P),

x(t;p) €R",  u(t) €R™, y(t) € RY, x,=V'x, A,=V'AV, B,=V'B,
A(p) €c R™" B(p) € R™", C(p)c R¥". C.=CV, V=V(p)eSt(nr).

» For each parameter in a set of parameter values {p1, po, ..., Pk}, use proper or-
thogonal decomposition (POD) to derive a reduced-order basis V,; € St(n, r).

» This yields a set of local basis ma-
trices {Vl, V,, ... ,VK}.

» Given a new parameter value p, a
basis V can be obtained by inter-
polating the local basis ma-

trices on a tangent space to
St(n, r).

Figure: Interpolation on St(n, r).
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K = number of p; r = size of the reduced model

» Application: transient heat equation on a square domain, with 4 disjoint discs.
» FEM discretization with n = 1169. Simulation for t € [0, 500], with At = 0.1.
» 500 snapshot POD over 5000 timeframes, with a reduced model of size r = 4.

» Relative error between y(-; p) and y,(; p) is about 1%.
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