
Elastic Theory of Plates

Marco Sutti

École Polytechnique Fédérale de Lausanne

Lausanne, SUISSE

May 23, 2015

Abstract

In this memoir the elastic theory of plates will be reviewed follow-
ing di�erent authors, amongst the others Timoshenko and Woinowsky-
Krieger (1959), Belluzzi (1966), Selvadurai (1979), Ventsel and Krautham-
mer (2001), Corigliano and Taliercio (2005). Along this memoir, the
elastic theory of plates is explained starting from the general theory,
passing through rectangular plates and �nishing with the theory of thin
plates. All this process describes how to derive the elastic equations for
circular thin plates. These equations are achieved via a transformation
of the reference system from rectangular to polar coordinates. The axial
symmetry of circular plates simpli�es the problem to one spatial variable
r, thus making the dynamic analysis more manageable.

1 The plate model

Let us start o� by considering a generic plate element as shown in �gure 1. The
plate model can be viewed as a two-dimensional extension of the beam model.
The basic idea is to analyse the plate deformation by studying the deformation
of its middle plane. In this way, the state of deformation will be associated to
the loads acting in the middle plane of the plate. As in the beam model the
beam deformation is analyse by studying its axis, analogously herein the plate
deformation is analysed by referring to its middle plane.
The displacement in the vertical direction z is de�ned as w ≡ w(x, y), i.e., it
is function of x and y, but not of z.
The hypotheses made in order to develop the plate model are the following
ones:

• small displacements and small deformations;

• homogeneous, isotropic, Green hyper-elastic material (i.e. there exists a
potential function by which stresses and strains can be represented);
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• the medium is a Cauchy continuum (that is, the stress-state tensor is
symmetric, and there are no distributed micro-couples);

• two geometrical dimensions are prevalent with respect to the third one;

• σz = 0, hypothesis that does not allow to represent the state of stress
di�usivity.
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p(x,y)

Figure 1: A generic plate element with the reference system lying on its middle plane.
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Figure 2: A generic point on the generic straight segment initially orthogonal to the
plate middle plane.

The kinematic model of the de�ected plate assumes that a generic straight
segment, initially perpendicular to the middle plane (see �gure 2), after the
deformation it is still straight. Not necessarily, after the deformation, the
generic straight segment is still perpendicular to the deformed mid plane, as
shown in �gure 3.
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Figure 3: A section of a plate, traced in the x-z plane, before and after the defor-
mation.

Within this discussion the focus will be on the �exural behaviour of plates,
thus only forces acting perpendicularly to the middle plane will be consid-
ered, decoupling the �exural problem from the one related to the forces acting
parallel to the middle plane (membrane theory).

Displacement components. The local displacement vector is represented
by:

¯
s(x, y, z) =

uv
w

 =

−zϕx(x, y)
−zϕy(x, y)
w(x, y)

 ,
where:

• u is the displacement component in the x direction;

• v is the displacement component in the y direction;

• w is the displacement component in the z direction.

and ϕx(x, y), ϕy(x, y) and w(x, y) are the generalized displacements:

3



• ϕx(x, y) is the rotation around the y axis occurring in the x-z plane;

• ϕy(x, y) is the rotation around the x axis occurring in the y-z plane;

• w(x, y) is the middle plane displacement in the vertical direction z.

The displacement vector can be rewritten as:

¯
s =

¯̄
n

¯
U,

where
¯
U is the vector of generalized displacements:

¯
U =

w(x, y)
ϕx(x, y)
ϕy(x, y)

 ,
and

¯̄
n is the correlation matrix between local displacements and generalized

ones:

¯̄
n =

0 −z 0
0 0 −z
1 0 0

 .
Strain components. The strain components can be worked out by means
of the compatibility equations:

¯
ε =


εx
εy
εz
γxy
γxz
γyz

 =


u,x
v,y
w,z

u,y + v,x
u,z + w,x
w,y + v,z

 =


−zϕx,x
−zϕy,y

0
−zϕx,y − zϕy,x
−ϕx + w,x
−ϕy + w,y

 =
¯̄
b
¯
q,

where
¯
q is the vector of generalized strains and

¯̄
b is the correlation matrix

between local strains and generalized ones.

¯
q =


−ϕx,x
−ϕy,y

−(ϕx,y + ϕy,x)
−ϕx + w,x
−ϕy + w,y

 =


χx
χy
χxy
tx
ty

 . (1)

The terms denoted with χ are the generalized curvatures; in particular, χxy
is the torsional curvature. The terms tx and ty represent the shear angular
deformations.

¯̄
b =


z 0 0 0 0
0 z 0 0 0
0 0 z 0 0
0 0 0 1 0
0 0 0 0 1

 .
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Load components. The generalized loads will be worked out by using the
de�nition of external speci�c work per unit area.

¯
F =

FxFy
Fz

 .
The external speci�c work per unit area is given by:

dWE

dA
=

∫ +h/2

−h/2
Fiδŝi dz =

¯
P T δ ˆ

¯
U =

∫ +h/2

−h/2
δˆ
¯
sT

¯
F dz,

where:

• δŝi is the virtual displacement �eld;

•
¯
P is the vector of the generalized loads.

dWE

dA
= δ ˆ

¯
UT

∫ +h/2

−h/2 ¯̄
nT

¯
F dz =

¯
P T δ ˆ

¯
U = δ ˆ

¯
UT

¯
P.

From the last equation one can read the expression that give rise to the gen-
eralized loads:

¯
P =

∫ +h/2

−h/2 ¯̄
nT

¯
F dz.

Substituting the expressions for
¯̄
n and

¯
F one can get:

¯
P =

∫ +h/2

−h/2

 0 0 1
−z 0 0
0 −z 0

FxFy
Fz

 dz,

=

∫ +h/2

−h/2

 Fz
−zFx
−zFy

 dz,

=

 p(x, y)
mx(x, y)
my(x, y)

 .
Note that p(x, y) is dimensionally a force per unit area (i.e., a surface dis-
tributed load, [F/L2]), whilst mx(x, y) and my(x, y) are moments per unit
length (i.e., they have the dimension of a force, [F]).
It should be noted that there is no explicit information about the points where
the generalized loads are acting; it is only the assumption made by the model
that permits to tell that they act in the middle plane of the plate, as shown in
�gure 4.
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Figure 4: Generalized loads acting on a rectangular plate element.

Stress components. In order to work out the generalized stresses, the def-
inition of internal speci�c work per unit area will be exploited:

dWI

dA
=

∫ +h/2

−h/2
δˆ
¯
εT

¯
σ dz = δ

¯
qT
∫ +h/2

−h/2 ¯̄
b
¯
σ dz = δ

¯
qT

¯
Q, (2)

where:

• δˆ
¯
ε are the virtual local strains;

•
¯
σ are the local stresses;

•
¯
Q is the vector containing the generalized stresses.

The local deformations are related to the generalized ones by means of the
correlation matrix

¯̄
b:

¯
ε =

¯̄
b
¯
q,

The expression needed in order to work out the vector of the generalized
stresses can be easily read from equation (2):

¯
Q =

∫ +h/2

−h/2 ¯̄
b
¯
σ dz.

Performing the computations one can �nally obtain:

¯
Q =

∫ +h/2

−h/2


z 0 0 0 0
0 z 0 0 0
0 0 z 0 0
0 0 0 1 0
0 0 0 0 1



σx
σy
τxy
τxz
τyz

 dz,
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=



∫ +h/2

−h/2 zσx dz∫ +h/2

−h/2 zσy dz∫ +h/2

−h/2 zτxy dz∫ +h/2

−h/2 τxz dz∫ +h/2

−h/2 τyz dz


=


Mx

My

Mxy

Vx
Vy

 ,

where σx and σy are the normal stresses, whilst τxy, τxz and τyz are the tan-
gential stresses. The distance of the point of application of such stresses from
the middle plane is denoted as z, as can be seen in �gure 5.
The generalized moments Mx, My and Mxy have the dimension of a force (i.e.,
they are moments per unit length, [F]), whilst the shear terms Vx and Vy have
the dimensions of a force per unit length, i.e. [F/L].
All the local and generalized stresses, along with the directions in which they
are acting, are graphically illustrated in �gure 5. The moments are represented
as vectors; z represents the stresses lever arm with respect to the middle plane.

2 Plate equilibrium problem

There are three di�erent ways to study the problem of the plate equilibrium:

• by using the virtual work principle;

• by using the integrated equilibrium equations;

• by studying the equilibrium of a plate element.

In this section, the problem of the plate equilibrium will be studied by means
of a rectangular plate element, as illustrated in �gure 5.
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Figure 5: Equilibrium of a rectangular plate element.
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Rotational equilibrium with respect to x axis.

V ′y dx dy−M ′
y dx+My dx+M ′

xy dy+Mxy dy+p(x, y) dx dy
dy

2
+my dx dy = 0.

The term p(x, y) dx dy
dy

2
is dropped out since it represents an in�nitesimal of

higher order.(
Vy +

∂Vy
∂y

dy

)
dx dy −

(
My +

∂My

∂y
dy

)
dx+My dx

−
(
Mxy +

∂Mxy

∂x
dx

)
dy +Mxy dy +my dx dy = 0,

Vy −
∂My

∂y
− ∂Mxy

∂x
+my = 0.

Finally:

Vy =
∂My

∂y
+
∂Mxy

∂x
−my. (3)

Rotational equilibrium with respect to y axis.

V ′x dy dx−M ′
x dy+Mx dy−M ′

yx dx+Myx dx+p(x, y) dx dy
dx

2
+mx dy dx = 0.

The term p(x, y) dx dy
dx

2
is dropped out since it represents an in�nitesimal of

higher order.(
Vx +

∂Vx
∂x

dx

)
dy dx−

(
Mx +

∂Mx

∂x
dx

)
dy +Mx dy

−
(
Myx +

∂Myx

∂y
dy

)
dx+Myx dx+mx dy dx = 0,

Vx −
∂Mx

∂x
− ∂Myx

∂y
+mx = 0.

Finally:

Vx =
∂Mx

∂x
+
∂Myx

∂y
−mx. (4)

Translational equilibrium.

∂Vx
∂x

dx dy +
∂Vy
∂y

dy dx+ p(x, y) dx dy = 0,

∂Vx
∂x

+
∂Vy
∂y

+ p(x, y) = 0. (5)
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Plate equilibrium equation. Substituting equations (3) and (4) into equa-
tion (5) one can work out the equilibrium equation of the rectangular plate
element:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
+ p(x, y)− ∂my

∂y
− ∂mx

∂x
= 0 (6)

Generalized constitutive relationship. In order to develop the general-
ized constitutive relationship, the de�nition of elastic speci�c energy per unit
area will be exploited. Recalling the local constitutive relationship

¯
σ =

¯̄
D

¯
ε,

where
¯̄
D is the sti�ness matrix:

¯̄
D =

E

1− ν2



1 ν 0 0 0
ν 1 0 0 0

0 0
1− ν

2
0 0

0 0 0
1− ν

2
0

0 0 0 0
1− ν

2


,

one can write down the elastic speci�c energy per unit area:

dΩ

dA
=

1

2

∫ +h/2

−h/2 ¯
εT

¯
σ dz =

1

2¯
qT
∫ +h/2

−h/2 ¯̄
bT

¯̄
D

¯̄
b dz

¯
q =

1

2¯
qT

¯̄
D∗

¯
q.

From the last expression it is clear that the generalized sti�ness matrix
¯̄
D∗ is

equal to:

¯̄
D∗ =

∫ +h/2

−h/2 ¯̄
bT

¯̄
D

¯̄
bdz

=

∫ +h/2

−h/2


z 0 0 0 0
0 z 0 0 0
0 0 z 0 0
0 0 0 1 0
0 0 0 0 1

 E

1− ν2



1 ν 0 0 0
ν 1 0 0 0

0 0
1− ν

2
0 0

0 0 0
1− ν

2
0

0 0 0 0
1− ν

2




z 0 0 0 0
0 z 0 0 0
0 0 z 0 0
0 0 0 1 0
0 0 0 0 1

 dz.

Remembering that the moment of inertia of a unit length element is given by:

∫ +h/2

−h/2
1 · z2 dz = I,
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one can �nally work out
¯̄
D∗ as follows:

¯̄
D∗ =

EI

1− ν2



1 ν 0 0 0
ν 1 0 0 0

0 0
1− ν

2
0 0

0 0 0

(
1− ν

2I

)
h 0

0 0 0 0

(
1− ν

2I

)
h


.

The generalized sti�ness matrix
¯̄
D∗ just obtained relates the generalized stresses

¯
Q to the generalized strains

¯
q:

¯
Q =

¯̄
D∗

¯
q, (7)

where
¯
q and

¯
Q are the vectors:

¯
q =


χx
χy
χxy
tx
ty

 ,

¯
Q =


Mx

My

Mxy

Vx
Vy

 .
Equation (7) can be rewritten in expanded form, giving rise to the following
relationships:

Mx = D(χx + νχy),

My = D(χy + νχx),

Mxy = D
1− ν

2
χxy =

EI

1− ν2
1− ν

2
χxy =

EI

2(1 + ν)
χxy = GIχxy,

Vx = Gh tx,

Vy = Gh ty,

where:

• D =
EI

1− ν2
is the �exural rigidity factor, which includes all the elastic

constants related to material;

• G =
E

2(1 + ν)
is the shear modulus;

• I =
1 · h3

12
is the moment of inertia of a unit length element.
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3 Thin plates theory

If a plate is thin enough with respect to its height, it is possible to neglect
the shear deformations. Usually it is considered that a plate falls into this
hypothesis �eld if h < min(a, b)/5, where h is the thickness, a and b are the
other two dimensions. Furthermore, also the condition that the maximum
displacement of the plate must be smaller than 1/5 of the thickness should
be satis�ed (Belluzzi, 1966). If the previous conditions are met, then the
generic straight segment initially perpendicular to the middle plane remains
perpendicular to it even after the deformation. This removes the possibility
of having angular (i.e., shear) deformations. This hypothesis was �rst studied
by Kirchho� and it is usually named after him (Timoshenko and Woinowsky-
Krieger, 1959). The Kirchho�'s hypothesis can be represented by the following
mathematical condition:

γxz = γyz = 0,

which implies (see equation (1)):

ϕx =
∂w

∂x
, ϕy =

∂w

∂y
.

Now it is clear from the previous expressions that, under the Kirchho�'s hy-
pothesis, the rotation of the generic straight segment is exactly equal to the one
of the middle plane, meaning that there are no angular deformations. There-
fore the plate model can be reformulated in this simpli�ed case, obtaining the
expressions reported below.
Local displacement vector:

¯
s =

uv
w

 =

 −zϕx−zϕy
w(x, y)

 =

−zw,x−zw,y
w(x, y)

 .
Generalized displacement vector:

¯
U =

 ww,x
w,y

 .
Generalized strain vector:

¯
q =

 χxχy
χxy

 .
Local strain vector:

¯
ε =

 εxεy
γxy

 =

 zχxzχy
zχxy

 =

−zw,xx−zw,yy
−2zw,xy

 .
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The generalized constitutive relationships give rise to the following expressions:

Mx = D(χx + νχy) = −D
(
∂2w

∂x2
+ ν

∂2w

∂y2

)
, (8)

My = D(χy + νχx) = −D
(
∂2w

∂y2
+ ν

∂2w

∂x2

)
, (9)

Mxy = GIχxy = −D(1− ν)

(
∂2w

∂x∂y

)
. (10)

Recalling the plate equilibrium equation (6) and neglecting the terms re-
lated to distributed micro-couples:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
+ p(x, y) = 0. (11)

Substituting the equations (8), (9) and (10) into equation (11) one can get:

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
= −p(x, y)

D
,

namely:

∇4w(x, y) = −p(x, y)

D
, (12)

which is the Germain�Lagrange equation for thin plates (i.e., plates under
the Kirchho� hypothesis). It should be noticed that this equation includes in
itself the equilibrium condition, the compatibility equation and the constitu-
tive relationship. It appears as a generalization to the two-dimensional case
of the unidimensional Euler�Bernoulli equation for beams (Timoshenko and
Woinowsky-Krieger, 1959).
In equation (12) appears the symbol ∇4 which represents the Laplacian opera-
tor of fourth order. The Laplacian of a function allows to compare the function
at a point with the function at neighbouring points (Farlow, 1993). The Lapla-
cian of fourth order can be viewed as a generalization of the unidimensional
fourth derivative to higher dimension.
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3.1 Circular plates

Since in the present work only circular plates will be analysed, it is convenient
to express the governing di�erential equation in polar coordinates, which can
be easily achieved by performing a coordinate transformation. Figure 6 illus-
trate the equilibrium of a circular plate element.

Mθ

Mθr

x, u
y, v

z, w Qθ

p(r,θ)

M’rθ

M’r

Q’r

Mr

Qr
Mrθ

M’θr

M’θ

Q’θ

h

dθ r dθ

dr

r

θ

Figure 6: Equilibrium of a circular plate element.

The geometrical relationships between Cartesian and polar coordinates are:

x = r cos θ, y = r sin θ, r2 = x2 + y2, θ = arctan
(y
x

)
,

∂r

∂x
=
∂
√
x2 + y2

∂x
=

2x

2
√
x2 + y2

=
x

r
= cos θ,

∂r

∂y
=
∂
√
x2 + y2

∂y
=

2y

2
√
x2 + y2

=
y

r
= sin θ,

∂θ

∂x
=

arctan (y/x)

∂x
= − y/x2

1 + (y/x)2
= − y

r2
= −sin θ

r
,

∂θ

∂y
=

arctan (y/x)

∂y
=

1/x

1 + (y/x)2
=

x

r2
=

cos θ

r
.

Applying the chain rule:

∂w

∂x
=
∂w

∂r

∂r

∂x
+
∂w

∂θ

∂θ

∂x
=
∂w

∂r
cos θ − 1

r

∂w

∂θ
sin θ.
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Now it should be noted that for an axis-symmetric problem, like all the ones
that will be treated in the present work, holds:

∂

∂θ
= 0,

i.e., all the terms involving partial derivatives with respect to θ can be dropped
out. Therefore the previous expression can be simpli�ed:

∂w

∂x
=
∂w

∂r

∂r

∂x
=
∂w

∂r
cos θ.

To evaluate the term ∂2w/∂x2 the previous operation must be repeated twice,
obtaining:

∂2w

∂x2
=
∂2w

∂r2
cos2 θ +

∂w

∂r

sin2 θ

r
.

Analogously:
∂2w

∂y2
=
∂2w

∂r2
sin2 θ +

∂w

∂r

cos2 θ

r
,

∂2w

∂x∂y
=
∂2w

∂r2
sin 2θ

2
− ∂w

∂r

sin 2θ

2r
.

Adding term by term:

∇2
rw ≡

∂2w

∂x2
+
∂2w

∂y2
=
∂2w

∂r2
+

1

r

∂w

∂r
.

Repeating the operation twice, one can get the governing di�erential equation
for axis-symmetric plates in polar coordinates:

∇4
rw(r, θ) ≡

(
∂2

∂r2
+

1

r

∂

∂r

)(
∂2w

∂r2
+

1

r

∂w

∂r

)
=
p(r, θ)

D
.

Since the plate geometry is symmetric and also the load distribution will be
assumed to be axis-symmetric throughout this work, the previous equation
can be simply rewritten as:

∇4
rw(r) =

p(r)

D
. (13)

From the expressions outlined above the curvatures in polar coordinates
can be worked out (assuming that x axis is taken in the direction of the radius
r, at θ = 0, in order to simplify the derivations):

χx = χr = −∂
2w

∂x2
= −∂

2w

∂r2
,

χy = χθ = −∂
2w

∂y2
= −1

r

∂w

∂r
,
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χxy = χrθ = − ∂2w

∂x∂y
= 0.

Now the relationships between moment and curvatures:

Mr = Mx = D(χx + νχy) = −D
(
∂2w

∂r2
+ ν

1

r

∂w

∂r

)
,

Mθ = My = D(χy + νχx) = −D
(

1

r

∂w

∂r
+ ν

∂2w

∂r2

)
,

Mrθ = Mxy = D(1− ν)χxy = 0.

Elastic strain energy computation:

U =
1

2

x

S

(Mxχx +Myχy + 2Mxyχxy) dS,

=
1

2

x

S

(D(χx + νχy)χx +D(χy + νχx)χy + 2D(1− ν)χ2
xy) dS,

=
1

2
D

x

S

(χ2
x + χ2

y + 2νχxχy + 2(1− ν)χ2
xy) dS,

=
1

2
D

x

S

(χ2
x + χ2

y + 2χxχy − 2χxχy + 2νχxχy + 2(1− ν)χ2
xy) dS,

=
1

2
D

x

S

((χx + χy)
2 − 2χxχy(1− ν) + 2(1− ν)χ2

xy) dS,

=
1

2
D

∫ 2π

0

∫ R

0

[
(χx + χy)

2 − 2(1− ν)(χxχy − χ2
xy)
]
r dθ dr.

Finally, substituting the expressions of the curvatures into the last equation:

U =
1

2
D

∫ 2π

0

∫ R

0

[(
∂2w

∂r2
+

1

r

∂w

∂r

)2

− 2(1− ν)

(
∂2w

∂r2
1

r

∂w

∂r

)]
r dθ dr. (14)

This result can also be found in Clough and Penzien (1993). Since, as was
previously mentioned, the plate de�ection shape does not depend on θ, the
plate equation (13) can be rewritten in terms of total derivatives:

∇4
rw(r) ≡

(
d2

dr2
+

1

r

d

dr

)(
d2w

∂r2
+

1

r

dw

dr

)
=
p(r)

D
. (15)

Introducing the identity:

∇4
rw(r) ≡ d2w

dr2
+

1

r

dw

dr
=

1

r

d

dr

(
r

dw

dr

)
15



Equation (15) now becomes:

1

r

d

dr

{
r

d

dr

[
1

r

d

dr

(
r

dw

dr

)]}
=
p(r)

D
. (16)

The solution of this equation is given by a sum of the solution of the
associated homogeneous di�erential equation wh and the particular solution
wp:

w = wh + wp.

The solution of the associated homogeneous form of (16) is worked out:

wh = C1 ln r + C2r
2 ln r + C3r

2 + C4,

where C1, C2, C3 and C4 are constants that can be evaluated from the boundary
conditions. The particular solution wp is obtained by successive integration of
equation (16):

wp =

∫
1

r

∫
r

∫
1

r

∫
r p(r)

D
dr dr dr dr.

If the slab is subjected to a uniform distributed load with intensity constant
in the radial direction equal to p(r) = p0, the particular solution is:

wp =
p0r

4

64D
.

Therefore the general solution of equation (16) is:

w(r) = C1 ln r + C2r
2 ln r + C3r

2 + C4 +
p0r

4

64D
,

Mr = −D
[
C1

1− ν
r2

+ 2C2(1 + ν) ln r + C2(3 + ν) + 2C3(1 + ν) +
p0r

2

16D
(3 + ν)

]
.

Particular cases of boundary conditions must be considered in order to deter-
mine the four constants.
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